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Preface

The author’s book on Gewdhnliche Differentialgleichungen (Ordinary Dif-
ferential Equations) was published in 1972. The present book is based on a
translation of the latest, 6th, edition, which appeared in 1996, but it also treats
some important subjects that are not found there. The German book is widely
used as a textbook for a first course in ordinary differential equations. This is
a rigorous course, and it contains some material that is more difficult than that
usually found in a first course textbook; such as, for example, Peano’s existence
theorem. It is addressed to students of mathematics, physics, and computer sci-
ence and is usually taken in the third semester. Let me remark here that in the
German system the student learns calculus of one variable at the gymnasium?!
and begins at the university with a two-semester course on real analysis which
is usually followed by ordinary differential equations.

Prerequisites. In order to understand the main text, it suffices that the
reader have a sound knowledge of calculus and be familiar with basic notions
from linear algebra. For complex differential equations, some facts about holo-
morphic functions and their integrals are required. These are summarized at
the beginning of § 8 and more fully described and partly proved in part C of the
Appendix. Functional analysis is developed in the text when needed. In several
places there are sections denoted as Supplements, where more special subjects
are treated or the theory is extended. More advanced tools such as Lebesgue’s
theory of integration or Schauder’s fixed point theorem are occasionally used in
those sections. The supplements and also § 13 can be omitted in a first reading.

Outline of contents. The book treats significantly more topics than can
be covered in a one-semester course. It also contains material that is seldom
found in textbooks and—what is perhaps more important—it uses new proofs
for basic theorems. This aspect of the book calls for a closer look at contents and
methods with emphasis on those places where we depart from the mainstream.

The first chapter treats classical cases of first order equations that can be
solved explicitly. By means of a number of examples the student encounters the
essential features of the initial value problem such as uniqueness and nonunique-
ness, maximal solutions in the case of nonuniqueness, and continuous depen-
dence on initial values in the small, but not in the large; see 1.VI-VIII. The

1In the German school system, the gymnasium is an academic high school that prepares
students for study at the university.
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phase plane and phase portraits are explained in 3.VI-VIII.

The theory proper starts with Chapter II. In this and the following chapter
the initial value problem is treated first for one equation and then for systems
of equations. The repetition caused by this separation of cases is minimal since
all proofs carry over, while the student has the benefit that the reasoning is not
burdened by technicalities about vector functions. The complex case, where
the solutions are holomorphic functions, is treated in § 8; the proofs follow the
pattern set in § 6 for the real case. The theory of differential inequalities in §
9 is one-dimensional by its very nature. An extension to n dimensions leads to
new phenomena that are treated in Supplement I of § 10.

Chapter IV is devoted to linear systems and linear differential equations of
higher order. In a Supplement to § 18 the Floquet theory for systems with
periodic coefficients is presented.

Linear systems in the complex domain is the topic of Chapter V. The main
properties of systems with isolated singularities are developed in a novel way
(see below). Equations of mathematical physics are discussed in § 25.

The main subject of Chapter VI is the Sturm-Liouville theory of boundary
value and eigenvalue problems. Nonlinear boundary value problems and corre-
sponding existence, uniqueness, and comparison theorems are also treated. In
§ 28 the eigenvalue theory for compact self-adjoint operators in Hilbert space is
developed and applied to the Sturm-Liouville eigenvalue problem.

The last chapter deals with stability and asymptotic behavior of solutions.
The linearization theorem of Grobman-Hartman is given without proof (the
author is still looking for a really good proof). The method of Lyapunov is
developed and applied in § 30.

An appendix consisting of four parts A (topology), B (real analysis), C
(complex analysis), and D (functional analysis) contains notions and theorems
that are used in the text or can lead to a deeper understanding of the subject.
The fixed point theorems of Brouwer and Schauder are proved in B.V and D.XII.

In closing this overview, we point out that applications, mostly from me-
chanics and mathematical biology, are found in many places. Exercises, which
range from routine to demanding, are dispersed throughout the text, some with
an outline of the solution. Solutions of selected exercises are found at the end
of the book. '

Special Features. Two general themes exercise a profound influence through-
out the book: functional analysis and differential inequalities.

Functional Analysis. The contraction principle, that is, the fixed point
theorem for contractive mappings in a Banach space, is at the center. This the-
orem has all necessary properties to make it a fundamental principle of analysis:
It is elementary, widely applicable, and far-reaching.? Its flexibility in connec-
tion with our subject comes to light when appropriate weighted maximum norms

2A remarkable theorem of Bessaga (1959) sheds light on the versatility of the contraction
principle. Consider a map T : § — S, where S is an arbitrary set, and assume that T has a
unique fixed point which is also the only fixed point of T2, T3, .... Then there is a metric on
S that makes S a complete metric space and T a contraction. One can even find metrics for
which the Lipschitz constant of T is arbitrarily small.
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are used. A first example is found in the dissertation of Morgenstern (1952);
references to later authors in the literature are historically unjustified. In linear
complex systems, the weighted maximum norm in 21.II leads to global existence
without using analytic continuation and the monodromy theorem. Moreover,
this proof gives the growth properties of solutions that are needed in the treat-
ment of singular points. The theorems on continuous dependence on initial
values and parameters and on holomorphy with regard to complex parameters
follow directly from the contraction principle, a fact which is still little known.
Differentiability with respect to real parameters requires Ostrowski’s theorem
on approximate iteration 13.IV.

In the treatment of linear systems with weakly singular points, the crucial
convergence proofs are also reduced to the contraction principle in a suitable
Banach space.? For holomorphic solutions, i.e., power series expansions, this
method was discovered by Harris, Sibuya, and Weinberg (1969). The logarith-
mic case can also be treated along these lines. This approach leads also to
theorems of Lettenmeyer and others, which are beyond the scope of this book;
cf. the original work cited above.

A theorem in Appendix D.VII, which is partly due to Holmes (1968), estab-
lishes a relation between the norm of a linear operator and its spectral radius.
As explained in Section D.IX, this result gives a better insight into the role of
weighted maximum norms.

Differential Inequalities. The author, who also wrote the first monograph
on differential inequalities (1964, 1970), has encountered many instances where
authors are unaware of basic theorems on differential inequalities that would
have made their reasoning much simpler and stronger. The distinction between
weak and strong inequalities is a matter of fundamental importance. In partial
differential equations this is common knowledge: weak maximum or comparison
principles versus strong principles of this type. Not so in ordinary differential
equations. Theorem 9.IX is a strong comparison principle that prescribes pre-
cisely the occurrence of strict inequalities, while most (all?) textbooks are con-
tent with the weak “less than or equal” statement. This principle is essential
for our treatment of the Sturm-Liouville theory via Priifer transformation. Its
usefulness in nonlinear Sturm theory can be seen from a recent paper, Walter
(1997).

Supplement I in § 10 brings the two basic theorems on systems of differen-
tial inequalities, (i) the comparison theorem for quasimonotone systems, and (ii)
Max Miiller’s theorem for the general case. Both were found in the mid twen-
ties. Quasimonotonicity is a necessary and sufficient condition for extending the
classical theory (including maximal and minimal solutions) from one equation
to systems of equations. More recently, both theorems (i) and (ii) have been
applied to population dynamics, but it is not generally known that results on

3The Banach space Hy of 24.1, which is indeed a Banach algebra, can be used for a short
and elegant proof of two fundamental theorems for functions of several complex variables, the
preparation theorem and the division theorem of Weierstrass. This proof has been propagated
by Grauert and Remmert since the sixties and can be found, e.g., in their book Coherent
Analytic Sheaves (Grundlehren 265, Springer 1984); cf. Walter (1992) for other applications.



viii Preface

invariant rectangles are special cases of Miiller’s theorem. Theorem 10.X1I is
the strong version of (i); it contains M. Hirsch’s theorem on strongly monotone
flows, cf. Hirsch (1985) and Walter (1997).

A Supplement to § 26 describes a new approach to minimum principles for
boundary value problems of Sturmian type that applies also to nonlinear differ-
ential operators; cf. Walter (1995). The strong minimum principle is generalized
in 26.XIX, so that it includes now the first eigenvalue case.

In Supplement II of § 26 on nonlinear boundary value problems the method
of upper and lower solutions for existence and Serrin’s sweeping principle for
uniqueness are presented.

Miscellaneous Topics. Differential equations in the sense of Carathéo-
dory. The initial value problem is treated in Supplement II of § 10 and a Sturm-—
Liouville theory under Carathéodory assumptions in 26.XXIV and 27.XXI. Asa
rule, the earlier proofs for the classical case carry over. This applies in particular
to the strong comparison theorem 10.XV and the strong minimum principle in
26.XXV.

Radial solutions of elliptic equations. This subject plays an active role in
recent research on nonlinear elliptic problems. The radial A-operator is an op-
erator of Sturm-Liouville type with a singularity at 0. The corresponding initial
value problem is treated in a supplement of § 6, and the eigenvalue problem and
nonlinear boundary value problems for the unit ball in R™ (for radial solutions)
in a Supplement to § 27.

Separatrices is the theme of a Supplement in § 9. Differential inequalites are
essential for proving existence and uniqueness.

Special Applications. We mention the generalized logistic equation in a sup-
plement to § 2, general predator—prey models in 3.VII, delay-differential equa-~
tions in 7.XIV-XV, invariant sets in 10.XVI and the rubber band as a model for
nonlinear oscillations in a nonsymmetric mechanical system in 11.X.

Ezact Numerics. We give examples in which a combination of a numerical
procedure and a sup-superfunction technique allows a mathematically exact
computation of special values. The numerical part is based on an algorithm,
developed by Rudolf Lohner (1987, 1988), that computes exact enclosures for
the solutions of an initial value problem. In blow-up problems one obtains rather
sharp enclosures for the location of the asymptote of the solutions; cf. 9.V. A
different kind of sub- and supersolutions is used to compute a separatrix; in
general, a separatrix is an unstable solution.

Acknowledgments. It is a pleasure to thank all those who have contributed
70 the making of this volume. The translator, Professor Russell Thompson,
worked with expertise and patience in the face of changes and additions during
the translation and furnished beautiful figures. He also suggested an improved
division into chapters. Irene Redheffer acted as a mediator between author and
translator with exceptional care and insight and translated the Solutions section.
Her help and advice and that of Professor Ray Redheffer were indispensable.
A\lIy sincere thanks go to all of them and also to other helping hands and minds.

Karlsruhe, August 1997  Wolfgang Walter
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Note to the Reader

In references to another paragraph, the number of the paragraph is given
before the number of the formula, theorem, lemma,.... For example, formula
(7) in § 15 is denoted as (15.7), and theorem 15.III or corollary 15.III refers to
the theorem or corollary in section III of § 15. But when citing within § 15, we
write simply formula (7), Theorem III, and Corollary III. A reference to B.V
refers to Section V in Part B of the Appendix.

When the name of an author is followed by the year of publication, as in
Perron (1926), the source is found in the bibliography at the end of the book.
My two books on analysis are cited as Walter 1 and Walter 2. A compilation of
general notions and a list of symbols are found at the end of the book.

The German word Ansatz is used repeatedly; a footnote in Part II of the
introduction gives an explanation.






Introduction

A differential equation is an equation containing independent variables, func-
tions, and derivatives of functions. The equation

¥ +2zy =0 (1)

is a differential equation. Here z is the independent variable and y is the un-
known function. A solution is a function y = ¢(z) that satisfies (1) identically
in z, that is, ¢'(z) + 2z - ¢(z) = 0. It is easy to check that the function y = e~
is a solution of (1):

%(e‘”z) +27e% =0 for —o00<T <00

We will see later that the collection of all solutions of (1) can be written in the
formy=C- e“""z, where C runs through the set of real numbers.

Equation (1) is a differential equation of first order. The general differential
equation of first order has the form

F(z,y,y') =0. (2)

A function y = y(z) is called a solution of (2) in an interval J if y(z) is differ-
entiable in J and

F(z,y(z),y'(z)) =0 holds forall z € J.

If a differential equation contains higher order derivatives, say up to nth
order, then the equation is called an nth order differential equation. Such an
equation can always be written in the general form

F(z,y,¥,...,4™) =0. (3)

Here a solution is defined to be an n-times differentiable function such that
equation (3) is satisfied identically when y(z) and its derivatives are substituted
into F. A differential equation of nth order is called ezplicit if it has the form

y™ = f(z,y,9,...,y"); (4)

otherwise it is called implicit. For a first order ordinary differential equation the
explicit form is

¥ = f(z,y). (5)
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The above comments apply to ordinary differential equations, that is, to
differential equations for functions y(z) of a single independent variable z. If
several independent variables and hence also partial derivatives are present, then
the equation is called a partiel differential equation. For example,

Ur + Uy =T+ Y

is a partial differential equation of first order for an unknown function u(z, y).
The function u(z,y) = y is a particular solution to this equation. An important
example of a second order partial differential equation is the potential equation
in three-space

AU = Ugg + Uyy + Uz, = 0,

where v = u(z, y, 2).

In this book we will be concerned only with ordinary differential equations.
The primary emphasis will be on differential equations in the real domain where
the independent variable z is a real variable and y(z) is a real function. However,
the fundamental facts about differential equations in the complex domain will
also be treated.

The expression integral of a differential equation is another term used for a
solution, and the terms solution curve and integral curve are used to emphasize
the geometric interpretation of a solution as a curve. A family of functions
y(z; Ch,...,Cr), depending on z and n parameters C,...,Cn (which vary in a
point set M C R™), is called a complete integral or a general solution of the nth
order differential equation (4) if it satisfies the following two requirements: first,
each function y(z; C1, ..., Cyr) is a solution to the differential equation (4) for an
arbitrary choice of the parameters (Cj,...,C,) € M, and second, all solutions
can be obtained in this manner. The notion of a general solution does not play
a major role in the theory of differential equations. It is used here in connection
with simple examples, where it is actually possible to give all solutions explicitly
in a form depending on n parameters.

Differential equations play a cardinal role in the natural sciences and tech-
nology, especially in physics, for the simple reason that many physical laws take
the form of a differential equation. Differential equations also appear in other
scientific domains where mathematical models and theories are used. The three
examples that follow are intended to give a first impression of the type of prob-
lems that arise. They all deal with the motion of a body in a gravitational
field.

I. Free Fall. When a body at rest is suddenly released, it falls downward
under the influence of gravity. This motion can be described mathematically
by a function s = s(t) which gives the distance that the body (or more exactly,
its center of mass) has traveled up to time ¢t. Other quantities of interest that

d
can be derived from s include the instantaneous velocity v(t) = Es(t) = §(1)

d
and the acceleration a(t) = Ev(t) = §(t). (When describing processes in which
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the independent variable represents time, it is customary to denote the inde-
pendent variable by ¢ instead of z, and derivatives by dots instead of primes.)
We learn in elementary mechanics that the acceleration of such bodies may be
assumed to be constant, in fact, equal to the acceleration g due to gravity at the
earth’s surface. Thus the distance-time function s(t) satisfies the second order
differential equation

§=g. (6)

It is easy to find all of the solutions here. Indeed, it follows from integrating the
equation ¥(t) = g that v(t) = gt + C), and likewise from $(t) = gt + C; that

s(t) = %Qtz +Cit+C;  (Ch, C; constant).

‘We have thus found the complete integral of the differential equation (6).

To go from this family of § = g to the solution that corresponds to a partic-
ular physical process requires some additional information, the so-called initial
conditions. Let us assume, for instance, that in the example above the body
is at rest and is then released at time t = 0. Corresponding initial conditions
are given by s(0) = 0 and $(0) = v(0) = 0. From the first of these conditions
it follows that Cy = 0, from the second that C; = 0, and in this manner one
obtains the solution

1
S(t) = §gt2.

Other initial conditions lead in a like manner to other solutions.

II. Free Fall from a Large Distance. Now suppose that the body is
at a large distance from the earth. The assumption of constant gravitational
acceleration made in I is valid only near the surface of the earth. According

to Newton’s law of gravitation, two bodies a distance s apart with masses M

(earth) and m (test body) attract each other with a force equal to K = ’Ylfzr_n’
s

where + is the gravitational constant. By Newton’s second law the acceleration
now satisfies the equation

} 1
5=-M - 5. (7)
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3

Cn
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Earth

The minus sign on the right-hand side indicates that the direction of the force
is opposite to the positive s-direction. This differential equation of second order
is significantly more difficult to integrate than equation (6). Nonetheless, the
solutions can be given explicitly; we will return to this later in §11.XII. Suppose
that at time ¢t = 0 a test body is located a distance R from the earth’s center
and released at rest. Then one has for initial conditions s(0) = R, 5(0) = 0.

A simple and sometimes successful method of finding solutions to a differen-
tial equation is to-look for a likely “ansatz”* (possibly containing parameters)
and to investigate whether it leads to a solution. We will try this approach in
the case of equation (7) using the ansatz

s(t)y=a-t°
When this function is substituted into equation (7), the result is
ab(b — 1)t°"2 = —yMa~2t~2.
Equating exponents and coefficients leads to b — 2 = —2b, that is, b = %, and

a-2(~1) = —~yMa=2, from which follows a = (9yM/2)'/3. Thus s(t) = a-1/3
is a solution. It is easy to check that any function of the form

s(t) =a(cxt)¥® with a=(9yM/2)'/3, c arbitrary, (8) -

is a solution to the differential equation (7) as long as ¢+t > 0. Note that none
of the solutions from this collection satisfies the initial conditions mentioned
above. The solution

2/3
s(t)=a (%—t) )

for example, satisfies s(0) = R, but v(0) = $(0) = —/2yM/R. This describes
an object falling to earth from the position s = R with initial speed at time

t = 0 equal to /2yM/R.

One of the solutions of (8) with ¢ =0 is
5(t) = at?/3. (9)

An object on this trajectory does not return to earth, since 5(t) — oo as t — oo;
however, the velocity #(t) = 2at~%/3 tends to 0 as t — oo. Since (t)? - 5(t) =

. 4The word ansatz is 2 German word that has become part of modern mathematical lan-
guage; it has no exact English counterpart. An ansatz is an “educated guess” at the probable
form of a solution. The plural of ansatz is ansdtze.
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04 t=5
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%as = 2vM, the velocity as a function of distance R from the earth’s center can
be expressed in the form

VR = v/ 2’7]VI/R.

Substituting R = 6.370 - 108 cm and M = 5.97 - 10%7g for the radius and mass
of the earth and taking v = 6.685 - 10~® dyn - cm? - g2, one obtains

vg = 1.12- 10% cm/sec = 11.2km/sec.

This is the well-known “escape velocity,” the minimum velocity that a projectile
fired from the surface of the earth must have in order to escape the effect of
the earth’s gravitational pull and never return. Compare this result with the
exercise at the end of this introduction.

III. Motion in the Gravitational Field of Two Bodies (Satellite
Orbits). The following equations (10) describe the motion of a small body
(a satellite) in the force field of two larger bodies (earth and moon). It is
assumed here that the motion of the three bodies takes place in a fixed plane
and that the two larger bodies rotate with the same constant angular velocity
about their common center of mass and maintain a constant distance to it. In
particular, the effect of the small body on the motion of the two larger bodies
will be ignored (this is the meaning of the adjectives ‘small’ and ‘large’). In
a corotating coordinate system with the center of mass at the origin, the two
larger bodies appear to be at rest. The path of the small body can be described
by a function pair (z(t),y(t)) that satisfies the following system of two second
order differential equations:

. . T4+ z -y
i=z+2y— 4 - ,

MR R RO ER M LR RE 10)
j=x—2—u 4 Y

e+ 0 +yF7 M-y +v P
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Here the two larger bodies are assumed to lie on the z-axis, and the parameter
i, respectively u/, is the ratio of the mass of the body lying on the positive,
respectively negative, z-axis to the combined mass of both bodies. Further, the
unit of length is chosen such that the distance between the two bodies is equal
to 1, and the unit of time such that the angular velocity of the rotation is also
equal to 1 (i.e., a complete revolution lasts 27 time units). A closed orbit is
reproduced in the figure. Here pu = 0.01213, which corresponds to the mass
ratio of the earth—moon system. The initial conditions are

z(0) =12, y(0)=0,
£(0) =0, #(0) ~ —1.04936.

The period T' (duration of one complete revolution) is approximately equal to
6.19217.

These examples suggest a variety of problems. First we made use of elemen-
tary methods of solution and discovered in the process that for some differential
equations all solutions can be given in closed form (Examples I, II). For differ-
ential equations in general, just as in the problem of finding the antiderivative
of an elementary function in integral calculus, the adage holds: Explicit solu-
tions are the exception! The theory of differential equations proper has as its
goal a general theory of existence, uniqueness, and other related subjects (for
example, continuous dependence of solutions on various kinds of data) together
with qualitative statements about the behavior of solutions in the large such as
boundedness, oscillation properties, stability, and asymptotic behavior. Theo-
rems about inequalities are also important, as the exercise at the end of this
introduction illustrates.

Several important topics can only be touched briefly in an introductory work
like this one. These include, for instance, the investigation of periodic solutions
to nonlinear differential equations. Periodic solutions have important applica-
tions in mechanics (oscillations) and celestial mechanics (closed orbits). How-
ever, their mathematical theory is often difficult. Some results in this direction
will be presented in 3.VI-VII and 11.X-XI. For the earth-moon-satellite prob-
lem described in III, a special case of the “restricted three-body problem,” it was
suggested some time ago that a spaceship on a periodic orbit could be used as a
kind of “bus line” between the earth and the moon. The ensuing investigation
led to the discovery of a new class of periodic orbits; see Arenstorf (1963).

Also, the problem of solving differential equations numerically will not be
treated here. We note that difficult numerical problems arise in connection with
space flight (determining the trajectories of spacecraft). There are efficient nu-
merical algorithms available today that allow the determination and correction
of such trajectories with sufficient accuracy and a tolerable amount of compu-
tational effort; see, for instance, the work of Bulirsch and Stoer (1966), from
which the algorithm that produced the above figure is taken.

IV. Exercise. Prove the assertion at the end of Example II. More pre-
cisely, show: If s(t) is a positive solution of the differential equation (7) in the
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interval 0 < ty <t < t; (with t; = oo allowed), 5(t) the solution given by (9),
and s(tg) = 5(to), 0 < $(to) = v(to) < T(to), then s(t) < 5(t) and v(t) < o(t) for
to < t < t;. Further, s(t) is bounded above, and v(t) has one zero (thus, s(t)
describes a return trajectory).

Hint. Derive a differential equation for the difference d(t) = 5 — s and
conclude from it that d is monotone increasing as long as d is positive. Note
that § < 0 and #{t) — 0 as t — co.






Chapter 1
First Order Equations:
Some Integrable Cases

§ 1. Explicit First Order Equations
We consider the explicit first order differential equation

yl = f(xvy)' (1)

The right-hand side f(z,y) of the equation is assumed to be defined as a real-
valued function on a set D in the zy-plane.

I. Solution. Line Element. Direction Field. Let J be an interval.
(In general, J can be open, closed, half-open, a half-line, or the whole real
line; when special restrictions are necessary, they will be stated explicitly.) A
function y(z) : J — R is called a solution to the differential equation (1) (in J)
if y is differentiable in J, the graph of y is a subset of D, and (1) holds, i.e., if

(z,y(x)) € D and ¥'(z)= f(z,y(z)) forall zeJ

y y
Yor- -
L T T
Zo
Slope and line element Direction field



10 I First Order Equations: Some Integrable Cases

The differential equation (1) has a simple geometric interpretation. If y(z)
is an integral curve of (1) that passes through a point (zo,y0) (i-e., y(zo) = ¥o),
then the differential equation specifies the slope of the curve at that point:
¥’ (z0) = f(Zo,%0)- This leads naturally to the notions of line element and
direction field, which we will now define. We interpret a numerical triple of the
form (z, y, p) geometrically in the following way: (z,y) gives a point in the plane,
and the third component p gives the slope of a line through the point (z,y) (e,
with tan @ = p, is the angle of inclination of the line; see the figure). Such a
triple (or its geometric equivalent) is called a line element. The collection of all
line elements of the form (z,y, f(z,y)), i.e., those with p = f(z,y), is called a
direction field.

The connection between direction fields and the differential equation (1) can
be expressed in geometric terms as follows: A solution y(z) of a differential
equation “fits” its direction field, i.e., the slope at each point on the solution
curve agrees with the slope of the line element at that point. To put it another
way, if y(z) is a solution in J, then the set of line elements (z, y(z), ¥ (z)), with
z € J, is contained in the set of all line elements (z,y, f(z,y)), (z,y) € D.

The strategy of sketching a few of the line elements in the direction field and
then trying to draw curves that fit these line elements can be used to get a rough
idea of the nature of the solutions to a differential equation. This procedure
suggests quite naturally the view that for each point (£,7) in D there is exactly
one solution curve y(z) passing through that point. A precise formulation of
this idea leads to the notion of

II. The Initial Value Problem. Let a function f(z,y), defined on a
set D in the (z,y)-plane, and a fixed point (£,7) € D be given. A function y(z)
is sought that is differentiable in an interval J with £ € J such that

¥'(z) flz,y(z)) in J, (2)
y€) = n (3)
Equation (3) is called the initial condition. Naturally, in (2) it is assumed that

graphy = {(z,y(z)) : € J} C D (otherwise the right-hand side of (2) would
not even be defined).

I11. Remarks. (a) Differential Equations and Families of Curves. The
geometric line of reasoning outlined above can be turned around. Given a family
of curves that completely covers a set D in the plane (precise analytic formula-
tion: a set M of differentiable functions whose graphs are pairwise disjoint and
have D as their union), there is a differential equation that has these curves as
its solutions. The right-hand side of this differential equation is determined as
follows: For every (zo,y0) € D, find the unique function ¢ belonging to M with
#(zo) = yo and set f(zo,yo) = ¢'(zo)-

This relationship does not give us very much from the mathematical point of
view. However, it does give an idea of some of the possibilities for the behavior
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of differential equations, and in addition, it can be used in the construction of
examples.

We will now briefly discuss some mathematical shorthand that is frequently
used.

(b) Sometimes (particularly in examples) when a differential equation is
solved, the function found as the solution is only a solution to the equation on
a subinterval of its domain of definition. When this happens, the expression
“¢(z) is a solution to the differential equation in the interval J” means that ¢
is defined at least on J and that the restriction ¢|; is a solution in the sense of
the definition in I.

() f ¢ : J — R is a solution of the differential equation (1) and J’ is a
subinterval of J, then, in a trivial way, the restriction % = ¢| , is also a solution
of (1). This is not regarded as a new solution. For instance, the statement “the
differential equation has exactly one solution existing in the interval J” means:
There exists a solution with J as its domain of definition, and every other
solution is a restriction of this solution.

Before giving a detailed investigation of initial value problems, we will study
some simple examples.

Iv. Y = f(z)

Suppose the function f(z) is continuous in an interval J. Then the set D
is a strip J x R. The direction field is independent of y. This leads naturally
to the conjecture that all of the solutions can be obtained by translating any
one particular solution in the direction indicated by the y-axis. The analysis
confirms that this guess is true. If £ € J is fixed, then by the fundamental
theorem of calculus, the function

aw:éﬁw#

is a solution of the differential equation satisfying the initial condition y(¢) = 0;

?

R A U |

Direction field in the case where the
right side depends only on z

N
\
4
t
/
L_

r
|
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and the general solution can be written in the form
y=y(z;C) = ¢(z) + C,

where C is an arbitrary constant. It follows in particular that the initial value
problem (2), (3) has exactly one solution in this case, namely

y(z) = ¢(z) + 1. 4)

The solution exists in all of J.

Note: If J is not compact, then f need not be bounded and as a result may
not be integrable over J. However, since (€, z] is a compact subinterval of J and
f is continuous on [£,z], the integral in the definition of ¢(z) exists for each
z € J, and the equation ¢' = f holds in all of J.

Ezample. The equation
y =23 +cosz
has as solutions
y(z;C) = —:c +sinz + C.
If the initial condition is y(1) = 1, then the corresponding solution is
y= —ili:c"‘ +sing ~sinl + §

Thus the problem of finding a solution to a differential equation of type (IV)
is purely a problem in integral calculus—that of finding an antiderivative of a
given function f(z). This motivates a commonly used expression: “Integrating
a differential equation” is synonymous with finding its solutions.

V. ¥ =g(v)

Let g(y) be continuous in an interval J. The direction field here is simi-
lar to the one in IV but with the roles of z and y exchanged. This suggests
interchanging = and y and writing the solution curves in the form z = z(y).

A formal calculation gives

dy dy
=dz
g =4g(y) & )
and hence the solution
dr=z+4C. 5
g(y) / 5)

If g # 0, then (5) gives a function £ = z(y) whose inverse function y(z) is a
solution to the differential equation, as we will show in VII. Finding a solution
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Direction field in the case where the
v _ o _ . ____ right side depends only on y

that satisfies an initial condition y(£§) = 7 involves making a choice of the
constant of integration such that z(n) = ¢, ie.,

v dz

sw=¢+ | o5 )
This is a special case of a “differential equation with separable variables.” This
type of equation is investigated in more detail in VII. A theorem that will be
proved in that section shows that the initial value problem has exactly one
solution y(z) in a neighborhood of the point £ if g(n) # 0 (if g(n) # 0, then
by continuity g # 0 in a neighborhood of 7). This solution can be obtained by
first using formula (6) to get z(y) and then finding the inverse function y(z). If
9(n) = 0, then y(z) = 7 is a solution. In this special case, it is quite possible
that there are also other solutions that pass through the point (¢,7), i.e., that
the initial value problem has more than one solution. For more in this regard,
see Example 2 and the discussion in VIIIL.

The nature of the direction field and the location of the constant of integra-
tion in formula (5) suggest that a translation of a solution in the z-direction
will produce another solution: If y(z) is a solution, then so is §(z) := y(z + C).
Indeed, this follows from

7(z) =y (z+ C) = g(y(z + C)) = 9(§(=))-

i

Ezample 1.
Y =-2.

Here D = R®. Using the procedure in (5) one obtains

%: —2dz & Inly| =22+ C & |y| =%,

The general solution (with +e® replaced with C) is
y(z;C) = Ce™2® (C €R).
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Solution curves y = Ce™2 of the
differential equation 3’ = —2y

The proof that every solution is of this form is elementary: If ¢(z) is any solution
of the differential equation, then

(¢e>)" = ¢'e* + 29> = 0,

ie., ¢e®® is a constant. (One could also appeal to the uniqueness statement
proved in VIL) It follows that exactly one solution passes through each point
(E’ ”7)) namely)

y(z; ne*) = ne?é=2),
Thus we have shown that the initial value problem is uniquely solvable, with a
solution that exists in R.

Example 2.

y =Vlyl.

Again D = R2. Since the direction field is symmetric, it follows that if y(z) is
a solution, then z(z) = —y(—xz) is also a solution. Indeed, we have

2(z) =y (~2) = VIy(~2)| = Vl2(2)I-

Thus it is sufficient to consider only positive solutions. From (5) it follows that

dy -2
ﬁ =2/y=z+C,
hence
w50 = EEL 4w (ow) (CeR

4

(note that \/y is positive, whence z > —C, and that for £ < —C this formula
does not give a solution to the differential equation). This function gives all of
the positive solutions (this also follows from the uniqueness statement in VII).
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Solution curves of the differential

equation ¥’ = /|yl

Additionally, y = 0 is also a solution, and the functions —y(—z;C) give the
negative solutions; they exist for z < C.

Solutions that exist in all of R can be constructed by piecing these functions
together; for example,

z2/4 for >0,
dlz)=4¢ 0 for -2<z<0,
—(z+2)2/4 for z<-2.

Note (and check for yourself!} that at the “splice points” the function ¢ is
differentiable and satisfies the differential equation.

In this example we encounter for the first time the phenomenon of

VI. Nonuniqueness. It is easy to see that every initial value problem
in Example 2 has infinitely many solutions. For instance, the set of solutions
through the point (2,1} is given by the functions

z2/4 for >0,
d(z;a)=4¢ 0 for a<z<0,
—(z —a)?/4 for T <a, '

where ¢ is any nonpositive number, together with

z2/4 for z >0,
1/’(””)‘{0 for <0

(we recall the convention, introduced in III.(c), that restrictions of solutions will
not be regarded as separate solutions).

Two types of nonuniqueness are illustrated in this example, depending on
whether the initial value 7 = y(£) is zero or different from zero. In the first case,
the solutions all branch directly at the point (£,7), and in the second case, the
solution begins as a unique solution which can then split at some distance from

(& n).
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In the latter case, the initial value problem is said to be locally uniquely
solvable. This means that there exists a neighborhood U of the point £ such
that exactly one solution of the initial value problem exists in U. Thus, in
Example 2 of Section V, initial value problems with 1 # 0 are locally uniquely
solvable, but those with n = 0 are not.

VII. vy = f(z)g9(y) | Equations with Separated Variables. This

class of equations, which includes the types discussed in IV and V as special
cases, can also be solved by quadrature using the method of separation of vari-
ables. We will describe this method first in heuristic terms. One goes from

dy dy
d— =f (m)g(y) to the equation W f(z)dz

and then by integration to the equation

[ s =[ s ™

from which a solution can be obtained by solving for y. In order to get the
solution that passes through the point (£, 7), it is necessary to choose the limits
of integration such that equation (7) is satisfied when z = £, y = n. This is
accomplished by setting

[ &= o ®

The following theorem gives conditions under which this procedure is per-
mitted. It concerns the initial value problem

¥ = f(2)g(y), y(€)=n (9)
under the following general hypothesis:

(H) f(z) is continuous in an interval J;; g(y) is continuous in an interval Jy;
and £ € Jz, n € Jy.

Theorem. Let n be an interior point of J, with g(n) # 0 and let (H) hold.
Then there exists a neighborhood of § (in the case where £ is a boundary point
of Jz, a one-sided neighborhood) in which the initial value problem (9) has a
unique solution y(z). It can be obtained from equation (8) by solving for y.

Proof. We recall the following result from analysis: If ¢ is a differentiable
function in an interval J and ¢’(z) # 0, then ¢ has a differentiable inverse
function 9 : J' — J, where J' = ¢(J).

Denote the left-hand side of (8) by G(y), the right-hand side by F(z). In this
notation (8) becomes G(y) = F(z). The function g(y) # 0 in a neighborhood of
n. Therefore, G(y) exists in this neighborhood, and because G’ = 1/g # 0, G has
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an inverse function H. Applying H to both sides of the equation G(y) = F(z)
and using y = H(G(y)) gives

y(z) = H(F(z)). (10)

We will show that y(z) satisfies (9). Since H and F are differentiable, it follows
that y is differentiable. Differentiation of the identity G(y(z)) = F(z) yields

G'(y(=)) ¥/ (2) = F'(=) = f(a)-

Since G’ = 1/g, it follows that y satisfies the differential equation

¥'(z) = f(z)g9(y(z))-

Furthermore, from the relations F(¢) = 0, G(n) = 0, H(0) = n we have that
y(&) = H(F(€)) = n. This shows that y(z) is a solution of the initial value
problem (9).

We now show that there are no other solutions. Suppose z(z) is another
solution. Then as long as g(z) # 0 (this is certainly true in a neighborhood of
£), the equation

#(z)
9(2(2))

holds. Integrating this identity between £ and = and using the change of vari-
ables s = z(z), one obtains

= T 2(t)dt / (=) gs
pa= [ Zo5- | o
IRCLEN o Ao
In the notation introduced earlier, this equation says that F(z) = G(z2(z)), and
therefore z(z) = H(F(z)) = y(z). a

= f(z)

VIII. The Case g(n) = 0. If g(n) =0in (9), then one solution can be
immediately given: y(z) = 1. However, it may be the case that there are other
solutions, as we have already seen in Example 2 of V.

Theorem. Let hypothesis (H) from VII hold, let g(n) =0 and g(y) # 0 in
an intervaln < y<n+aorn—a<y<mn (a>0), and let the improper
integral

/ e dy / T dz

n 9(2) n~a 9(2)’

respectively, be divergent. Then every solution that starts above or below the line
y = n remains (strictly) above or below this line (in both directions).
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It follows from this theorem that a solution y(z) which satisfies y > 7 at one
point remains greater than 7 for all z (a corresponding statement holds for <).
In particular, if  is an interior point of J, and if both integrals diverge, then
the initial value problem (9) has only one solution y(z) = 5. This is the case,
for example, if g(y) has an isolated zero at the point 7 and satisfies a Lipschitz
condition at 7

lg(v) — g(n)l = lg(¥)] < Kly -,
hence, in particular, if g’'(n) exists and is different from 0.

Proof. Let us assume that there exists a solution y(z) to the initial value
problem that is not identically equal to . To focus in on one of the four
possible cases, suppose that there exists a point £ to the right of £ such that
n < y(€) = 7 < 7+ . Then by (8) with (£,7) in place of (¢€,7), we have that

/ﬁy(z)%zém F) dt

holds, at least for as long as y(z) remains in the strip n < y(z) < 7+ a.
Suppose that zg is the first point to the left of £ with y(zp) = 1. Then the
above formula leads immediately to a contradiction, since the integral on the
right stays bounded as £ — zg, while the one on the left goes to infinity. B

‘We return again to the two examples from V that correspond to the integrals

£)
and thus y = 0 is the only solution through the origin. In Example 2, the
integrals on the right are convergent, and there are several solutions.
However, it is entirely possible that the integral converges and the solution
to the initial value problem is still unique. To illustrate this point, consider the
following:

+o dy +o dy
/ — and / ——=|. In Example 1, the integrals on the left are divergent,
0 o Iyl

Ezample 1.
y' = —z(sgny)Vlyl = {

-z./y for y2>0,
z/~y for y<O.
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T

Solution curves of the differential
equation y' = —z(sgny)+/|y|

The direction field is symmetric to the z-axis; i.e., if y(z) is a solution, then so
is —y(z). Thus it is sufficient to calculate the positive solutions. From
ay

1 2
%=—2\/§=— :z:d:z:=-2—(C—~:1:)

it follows that
y(z; C) = %6(0 -z?? in (-VC,VC) (C> 0)

(note that /g > 0). If this function is extended by setting y(z;C) = 0 for
|z] > V/C, then one clearly has a solution defined in R. Thus we have the
solutions +y(z;C) for C > 0 and y = 0. There are no other solutions. On the
one hand, they (that is, their graphs) cover the whole plane; on the other hand,
9(y) = /|| vanishes only for y = 0. Thus each initial value problem with 7 # 0
is locally uniquely solvable.

One can see from the figure that every initial value problem with y(¢) =
1 # 0 is uniquely solvable, not only locally, but also globally. For the initial
condition y(§) = 0, there are infinitely many solutions in the case where £ # 0,
but only one solution in the case where § = 0.

Ezample 2.
y' =eYsinz.
The direction field is symmetric with respect to the y-axis and periodic

in z of period 2, i.e., if y(z) is a solution, then so are u(z) = y(—z) and
v(z) = y(z + 2kr). By separation of variables (7) one obtains

/e"y dy = —e7Y =/sin:1:d:1:= —cosz — C;
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Q
]
N / vl

>

3

Solution curves of the differential equation 3’ = e?sinz

ie.,
y(z;C) = —log(cosz + C) (C +cosz > 0).

The reader should verify that all solutions have been found and that each initial
value problem is uniquely solvable.

This example exhibits a new and important phenomenon. The solutions
can have quite different behavior, depending on the value of the constant C.
While in the case C > 1 solutions exist for all £ and are bounded, in the case
—1 < C < 1 the solutions exist only in finite intervals and increase without
bound.

Consider, for purposes of illustration, the initial condition y(0) = 7. The
corresponding solution is

y(z;e™" —1) = ~log(cosz + e~ —1).
In particular, if = —log2, then y is given by
y(z;1) = —log(1 + cos z).

This solution exists in (—,7) and cannot be extended beyond this interval.
It tends to o0 as £ — L. Solutions with 7 < —log?2 exist in all of R and
are bounded. For > —log2, the solutions exist only in the interval |z| <
arccos(1—~e~7); the length of this interval of existence converges to 0 as 7 — oo.

Existence and Behavior in the Large. This example shows, first of all,
that the solution of an initial value problem does not necessarily exist in all of
R, but possibly only in a very small interval, and that this is true even if the
right-hand side of the differential equation is defined and “smooth” on all of R2.
Take another look at the formulation of Theorem VII in this regard. This raises
the question whether it is possible to make any general statements about the
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domain of definition of a solution. We will prove in 6.VII that a solution can
always be extended to the boundary of D (D is the domain of the right-hand
side of the differential equation). Secondly, the example also shows that the
behavior of solutions “in the large” can change dramatically with small changes
in the initial conditions; this occurs for solutions with initial values y(0) = 7,
where 7 is close to —log2, i.e., C = 1.

The three types of differential equations that follow can be reduced by simple
transformations to equations of the types already discussed. In all three cases
the function f(s) that appears is assumed to be continuous in an interval.

IX. Y = flaz +by+c)

The structure of the differential equation suggests that we look for a solution
of the form

u(z) = az + by(z) + ¢ (11)

(the case b # 0 is the only interesting one). If y(z) is a solution, then u(z)
satisfies

v =a+ by (z) =a+bf(u), (12)

which is a solvable equation of type V. Conversely, it is easy to see that a solution
y(z) of (11) can be obtained from a solution u(z) of (12). All solutions can be
obtained in this manner.

Ezample.
¥ =(z+y)’+.
Using the ansatz u(z) = z + y(z) we have
v =u?+1, andhence u=tan(z+ C)
(why does this give all the solutions?). The general solution can be written
y(z; C) =tan(z + C) — .

X. y=f (%) Homogeneous Differential Equation.

Using the ansatz u(z) = y—f:—) (z # 0) and calculating the derivative, one
obtains the relation
Y =u+zu = f(u),
and thus a differential equation for u(z) with separated variables,
o = f (u) —u
—

One sees immediately that every solution u(z) of (13) leads to a solution y(z) =
z - u(z) of the given differential equation.

(13)
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Ezample. The initial value problem

2
) _ Yy T
=22 1) =
] s 7 y(1) =1

transforms into an initial value problem

v = o5 u(l) =1
with the solution
U T 3 —
/ 2dz=— ﬁ; je, & 1_ —~logz.
1 1t 3

Thus the solution to the original problem is given by

y=zv1-3logz for 0<z< Ve~ 1.396.

+by+c
XL |y = _)
y=_ (ax + By +
In the case where the determinant Z Zl = (, that is, where a = Ao and

b = A3, the equations can be reduced to one of the types we have already
considered. If this determinant is not zero, then the linear system of equations

ez + by +¢=0,

oz + By +v=0 (14)

has a unique solution (zg, yo). If a new system of coordinates (Z, §) is introduced
by translating the origin to the point (zq, ¥o),
T:=z—To, Y:=Y—Yo,

then in the new coordinate system a solution curve y(z) is described by the
function

F(Z) := y(Z + z0) — yo-
The differential equation in the (Z,§) coordinate system

dg(z) _ , _ a(Z + z0) + b(F(Z) + vo) + ¢
dx =y(@+z) = (a(a‘c+xo)+ﬂ(ﬂ(f)+yo)+7)

f <aa‘c+bg(a‘c)) _; <a+b'y/:7:)
oI + By(Z) o+ fy/z
is just the special case ¢ = v = 0 of the original equation. It is homogeneous
and can be solved using the techniques in X.

How to proceed. (i) Determine the point (zo,yo) that satisfies (14).



§ 1. Explicit First Order Equations 23

(ii) Solve the differential equation with ¢ = y = 0 using techniques from X
(this equation is homogeneous).

(iii) A solution F(Z) of this equation generates a solution to the original
equation using the substitution Z = = — zg, § = y — ¥o, that is, y(z) == yo +
§(z —~ o).

We will illustrate these steps in the following

Ezample.

,__y+1_e y+1
V=2 P \z+2/)

From (14) we obtain zg = —2, yo = —1. The differential equation for § is

and for u = §/Z the differential equation is

which gives

—/e'"du = /—}idi or e *=log|Z| + C =logc|Z|
(the constant of integration has been written as C = log c (¢ > 0)). One obtains
u = log(log c|Z|) as long as c|Z| > 1. The functions

y(z) = —1 - (z + 2)log(logclz +2|) for clz+2|>1

are the solutions of the original differential equation.

The value c = %ee-”’ gives the solution that passes through the origin. It
exists for £ > 1/c — 2 = —0.9095.

XII. Exercises. (a) In the above example, determine a solution y with
the property that liI&_y(x) = co. Is it uniquely determined?
XL ==t

Determine all of the solutions to the following differential equations and find
the particular solution that passes through the origin.

1 1
(b) y'—&+exp(y+ )

T z+2 T+2
y_cty+1l z+y+1
© == e’Cp( z+2 )

, _T+2y+1
@)y_2x+y+2
() y = ZXIE-

Tz42y+2
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XIII. Exercises. Determine all solutions of the differential equations
and in each case sketch the solution curves and determine the set of all points
(¢,m) for which the initial value problem is not locally unique.

(a) ' =3Jy[*® (y € R).
(b) 3' = 3(seny)ly*”® (y € R).

) ¥'=+vlyl(1-9) (¥ <1).

Solve the following initial value problems and in each case give the maximal
interval of existence of the solution.

2

@ ¥ = gy ¥ =0
(€ ¢ =LY, ym/2) = .
6 ¥ = oapr v =7

Determine all solutions of the differential equations
(@) ¥ =(z~y+3)?
2y(y—1)
h) ¢ = =———£,
(k) z(2-y)

(1) y==zy' — V2 + 42

Give a differential equation of the first order for the following families of curves
(parameter ¢ € R).

(G) y =ca?,
(k) y =ca? +c,
(1) y = cz® + (sgnc)c?.

XIV. Population Growth Models. In this section we investigate some
simple ecological models for the growth of a population. Let y(t) be the size
of a population at time £. If the relatzve growth rate of the population per

unit time is denoted by ¢ = c(2,y), then L = c; i.e., ¥ = cy. In any ecologi-

cal system, the resources available to support life are limited, and this in turn
places a limit on the size of the population that can survive in the system. The
number N denoting the size of the largest population that can be supported
by the system is called the carrying capacity of the ecosystem. We consider
a sequence of three single-population models, which incorporate the following
assumptions: The relative population growth rate depends only on y (that is to
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4
k=0
5
4 k=1
3 / / k=2
0 //
1=
: Population in multiples of yo
: > (year 1969) under different
1969 2000 2040 2080 assumptions (8 = 5)

say, not explicitly on t) and goes to zero as the population approaches N. In
particular, we assume that ¢ = ¢(y) is given by one of the following:

cly) = a(N —y)* with k=0,1,2.

To illustrate these ideas we will model the human population of the earth and
choose the year 1969 as the starting point (¢ = 0, with ¢ measured in years). Let
yo denote the population of the earth in the year 1969 and cg the relative annual
population growth rate for the year 1969. These are given by yo = 3.55 - 10°
and ¢p = 0.02. From the condition ¢(0) = co, it follows that & = co(N —yo)~*.

If we measure y(t) in multiples of yp, i.e., set y(t) = you(t), N = Byo, where
[ gives the carrying capacity in multiples of yy, then one obtains the initial
value problem

k
u' =cp <g:1{) u, uw(0)=1 (k=0,1,2). (15)

If £ = 0, equation (15) reduces to the equation u’ = cyu, which produces the
well-known exponential growth function u(t) = e®?. For the other cases,

k=1: c0t=(ﬂ—1)/1us(ﬂdis) =ﬂ;11og<(£;—_13u),

k=2260t=(ﬂ—1)2‘/1‘ s(ﬂ—d—ss)—z

-(55) e (520) 5555}

Solving these equations for u is easy when k& = 1 but difficult when & = 2;
however, for many questions, solving for u is not necessary For instance, we
can calculate the doubling time by putting u = 2. For the case k = 0, the
population of the year 1969 doubles in 50 - log2 = 34.7 years, and if 8 = 5 is
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Logistic equation.
The solutions uz and u—_3

with £, = %ms

ta

PN I
Y
o

used, it doubles in 50 - % . % = 39.2 years in the case k =1 and in 44.8' years for
k=2

The Logistic Equation. The equation with ¥ = 1 is called the logistic
equation. It was proposed as early as 1838 by the Belgian mathematician Pierre-
Frangois Verhulst (1804-1849). We will consider this equation in more detail
using different notation:

v =ulb—cu) with bec>0 logistic equation. (16)

This equation is the same as (15) with k£ =1 and
Lo
; ﬁ -1’
Using the methods described in VII one obtains the solutions

b
S v

Cc=

b= Be. (17)

for v#0 (18)

as well as two stationary solutions « = 0 and u = b/c (the reader should check
this). These are all of the solutions. On the one hand, every initial condition
u(to) = ug can be satisfied by one of these solutions, on the other hand, by the
results in VII and VIII, exactly one solution goes through each point.

Two simple propositions follow:

(a) Every solution u of (16) with u(to) > 0 remains positive for t > iy and
tends to b/c ast — oo.

(b) w =0 if and only if u, = b/(2c).

The proof of (a) is obvious from (18). For (b), we differentiate (16), obtaining

u" =/ (b~ cu) — cur = ' (b - 2cu). ]

In population models, «., with v > 0 describes the growth of the population,
and b/c is the carrying capacity 5. We will now check how the world population
y(t) = you(t) has grown since 1969 (¢t = 0) according to this model. Recall that
co = 0.02. We have u,(0) = 1, and we obtain v = 8 — 1 from (17), (18). Under
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the assumption 8 = 3 (b = 0.03) one obtains a population of y = 5.157 billion
for the year 1990 (¢ = 21) and with 8 = 5 (b = 0.025); y = 5.273 billion. The
actual population size in 1990 was 5.321 billion. The assumption 8 = 5 gives
a better approximation, though 8 = 3 corresponds to the carrying capacity
N = ypf = 10 billion which is sometimes used by demographers.

The point of inflection marks the turning point where the second derivative
becomes negative, and hence the point beyond which the yearly population
growth rate begins to decrease. It occurs in this model at (3/2 according to (b).
Applying this result to the world population under the assumption that g = 3
would mean that we have already passed this point (N/2 = yy3/2 = 5 billion).
The situation fits 3 = 5 better. One should, however, not forget that we are
dealing with the simplest growth model with bounded growth.

§ 2. The Linear Differential Equation. Related
Equations

A linear differential equation is an equation of the form
y' +g(z)y = h(z); (1)

we assume that the two given functions g(z) and h(z) are continuous on an
interval J. If h(z) = 0, then equation (1) is called homogeneous, otherwise
nonhomogeneous or inhomogeneous. The differential operator

Ly =y +g(z)y (2)
can be used to write the differential equation (1) in the form
Ly =0 (homogeneous) and Ly=h(z) (nonhomogeneous).

Thus, to each function ¢ € C'(J) the operator L associates a function ¥ =
Lo = ¢' + gp € C°(J). The value of the function L¢é at the point z will be
denoted by (Lé)(z).

The operator L is linear; i.e., if ¢, ¥ belong to C*(J) and a,b € R are
arbitrary constants, then

L{a¢ + bp) = aLd + bLyp.

1. Ly:=y +g(z)y=0 The Homogeneous Equation.

This is an equation with separated variables which can be solved using the
techniques discussed in 1.VII and 1.VIIL. From formula (1.8) we obtain the
family of solutions

y(z;C) = C - e 6@ with G(z) = /: g(t)dt (¢ € J fixed) (3)

(recall that g is continuous in J). It is easy to check that (3) gives a solution
for every real C and that exactly one solution from this family passes through a
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given point (£,7) € J x R. There are no other solutions, since by the theorems
proved in 1.VII, VIII there exists exactly one solution through each point in
J x R. The fact that every solution is given by (3) can also be verified directly:
If ¢ is a solution of L¢ = 0 and u(z) := e®®)¢(z), then u' = eC®) (gp+¢') = 0;
i.e., u is constant and hence ¢ has the form (3).

The unique solution satisfying the initial condition y(£) = 7 is given by

y(z) =n-e7 %@ with G(z) = /I g(t) dt. 4)
£

It exists in all of J.

1I. Ly = h(z) The Nonhomogeneous Equation. ;

Solutions to the nonhomogeneous equation can be obtained with the help of
an ansatz that goes back to Lagrange, the method of variation of constants. In
this method, the constant C in the general solution y(z; C) = Ce~¢®) of the
homogeneous equation is replaced by a function C(z). The calculation of an
appropriate choice of C(z) gives a solution of the nonhomogeneous equation.
Indeed, the ansatz

y(z) = C(z)e %@ with G(z)= /I g(t) dt
3

leads to
Ly=y +gy=(C' = gC + ¢C)e @ = C'e=C),
Hence Ly = h holds if and only if

C' = h()eC®, or equivalently, C(z)= / E)eSD dt + Co.  (5)
£

Theorem. If the functions g(z), h(z) are continuous in J and £ € J, then
the initial value problem

Ly=y +g(z)y=h(z), y(€)=n (6)

has ezactly one solution,
X
y(z) =7-e~C@) 4 ¢~ C@ / h(t)eC® dt. (7)
£

The solution exists in all of J.

The discussion leading up to formula (5) shows that (7) is a solution to
Ly = h; it is clear that the initial conditions are satisfied. Uniqueness is a
consequence of (a) below.

Remark on Linearity. If y, § are two solutions to the nonhomogeneous
equation Ly = h, then Ly — §) = Ly~ Ly = 0, ie., 2(z) = y—Fis a
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solution of the homogeneous equation Ly = 0. Thus all solutions y(z) of the
nonhomogeneous equation can be written in the form

y(z) = g(z) + 2(2), (8)

where 7(z) is a fixed solution of the nonhomogeneous equation and z(z) runs
through all solutions of the homogeneous equation. In other words,

y(z; C) = §(z) + Ce ) (C eR) (8)

is the general solution of the inhomogeneous equation.

It follows from (4) that a solution z of the homogeneous equation that van-
ishes at a point ¢ is identically zero (note that £ can be any point in J). Using
(8), this result implies

(a) Two solutions y, § of the inhomogeneous equation that coincide at one
point in J are identical.

Ezample.

Y +ysinz =sin’ z.

Here G(z) = —cosz. Hence z(z;C) = Ce®” is the general solution of the
homogeneous equation Lz = 0 and

z
:17(27) =/ sin3t . gfosT—cost ju
0

cos T
=ecos:x:/ (82 _ 1)e—s ds
1

cosz
= —e5%((s? ~ 1) + 25 +2)e”°
1

=sin?z — 2cosz — 2 + 4e°°5%1

is a solution to the nonhomogeneous differential equation. It follows that the
general solution of the nonhomogeneous equation is given by

y(z;C) =sin®z — 2cosz — 2 + C - 7.

III. ¥y +g(x)y+h(z)y* =0, a#1 Bernoulli’s Equation.

This differential equation, named after Jacob Bernoulli (1654-1705), can be
transformed into a linear differential equation. Let us assume that the functions
g, h are continuous in J and that y > 0. If the equation is multiplied by
(1 — @)y~ and the relation (1 — a)y~2y’ = (y'~)’ is used, then one obtains

@) + (1 - a)g(z)y* ™ + (1 — a)h(z) = 0.
Thus the function z = y*~* satisfies a linear differential equation,

Z +(1-a)g(z)z+ (1 - a)h(z) =0. (9)
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Solution of the initial value problem

/ Y 4 —__
y+1+$+(1+z)y =0, y(0) 1 |

—2.54

Conversely, if z(z) is a positive solution of (9), then the function y(z) =
(2(z))*/(1=2) is a positive solution of Bernoulli’s differential equation. For 7 > 0,
the initial condition y(£) = 7 transforms into z(£) = n*~* > 0. By Theorem
11, this condition uniquely defines a solution z of (9). Hence each initial value
problem for the Bernoulli equation with a positive initial value at the point £ is
uniquely solvable.

The cases where also nonpositive solutions occur will be discussed now.

(a) @ > 0: Then the differential equation is defined for y > 0, and y = 0
is a solution. Since all positive solutions can be given explicitly, it is easy to
determine, on a case by case basis, whether or not solution curves run into the
z-axis from above. This is the case, for example, for g =0, h = ~1, @ = 3
(Example 2 from 1.V).

(b) @ an integer: Then y < 0 is also permitted. There are two cases.

a odd: 1t follows from the Bernoulli equation that

(~y) + g(z)(~y) + h(z)(-y)* = 0.

So if y(z) is a positive solution of the Bernoulli equation, then u(z) = —y(z)

is a negative solution. Hence initial value problems with 7 < 0 can be easily

handled.

a even: Since 1 — @ is odd, y < 0 implies z = y*~* < 0, which in turn yields

y = —|2|1/(1—%), So for a negative initial value 7, the negative solution z of (9)

with 2(£) = 7'~ leads to a negative solution y = —[2|1/(1~2) with y(£) = 9.
In both cases the solution y satisfying y(£) = < 0 is unique.

Ezercise. Show directly (without using the uniqueness theorem) that for
a > 2, a € N, a solution y # 0 of Bernoulli’s equation has no zero in J.

Ezxample.

’ Y 4 _
Yy +——1+m+(1+m)y =0.
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The differential equation is defined for both positive and negative y. Using
R ding to (9
z= 7 gives, according to (9),

3
' _ —3(1 = 0.
Z =7 z—-3(1+z)=0

Clearly, ¢ = C(1 + z)® is the general solution of the homogeneous equation.
Thus the ansatz for the nonhomogeneous equation (by variation of constants)
is z = C(z)(1 + z)3. After a simple calculation, one obtains

= (1—_53:? = C(z) ='1+—3$.

Therefore, the general solution of the nonhomogeneous equation is

2(z;C)=C(1+12)® - 3(1+z)* = (1+2%)(Cz + C - 3).

Since o = 4 is even, one has

sgn(Cz + C —3)
Y1 +z)?Cz+C -3
The solution through the point (0, —1) is given by

1

Cl

y(z;C) =

12) = — 1<z <)
Ve =y (<Y
Iv. v + 9(z)y + hz)y? = k(z) Riccati’s Equation.

In this equation, which is named after the Italian mathematician Jacopo
Francesco Riccati (1676-1754), the functions g(z), h(z), k(z) are assumed to be
continuous in an interval J. Except in special instances, the solutions cannot
be given in closed form. However, if one solution is known, then the remaining
solutions can be explicitly calculated. For proof, we consider the difference of
two solutions y and ¢, u(z) = y(z) — ¢(z); it satisfies the equation

u + gu+ h(y? — ¢%) = 0.
Since y% — ¢? = (y — )(y + ¢) = u(u + 2¢), one has
o = [g(z) + 26(2)h(@)]u + h(z)ed = 0. (10)

Thus the difference satisfies a Bernoulli differential equation which can be con-
verted, using the techniques described in III, into the linear differential equation

2 —[g(z) + 2¢(z)h(z)]z = h(z), where 2(z)= @ (11)

Summary. If a solution ¢(z) of the Riccati equation is known, then all of
the other solutions can be obtained in the form

mw=am+j%, (12)

where z(z) is an arbitrary solution of the linear equation (11).
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Example. ¥ —y? -2y =2.
1
The function ¢(z) = - is a particular solution. Formula (11) then gives
the linear differential equation

2
z'+z<2z—;)+1=0.

The general solution to the homogeneous equation is 2(z) = Cz%e~=", from
which a particular solution Z of the nonhomogeneous equation can be obtained
using (7) with h = —1:

=z - 2% E(zr) with E(z)= / et dt.
0

The integral E(z) can be expressed in terms of the error function with imaginary
argument. The general solution of the original Riccati equation is now obtained
from (12),

1 1
Y@ O ==+ T e (C = 2E@))

_ —e~(C - 2E(z))
T 14 ze=2*(C - 2E(z))’

Since y(0; C) = C, every initial value problem y(0) = 7 can be immediately
solved.

V. Exercises. (a) Isoclines. Isoclines of a differential equation 3y’ =
f(z,y) are the curves f(z,y) = const, on which the direction field has constant
slope. Sketch the direction field for the differential equation

yl —_ y2 +1- $2
making use of the isoclines y? + 1 — 22 = const. Determine all solutions (one
solution is evident from the direction field). Which solutions exist on an infinite
interval; which exist in R?
(b) Determine all solutions of the differential equations
Y +ysinz =sin2z and y —3ytanz=1.

(c) Solve the initial value problem

¥ =ty + 24, y(0) =1
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VI. Exercise. Suppose f(z) is continuous on the half-open interval 0 <
z < 1. What additional conditions must f(z) satisfy so that every solution of
the differential equation
Y =f(z)y for 0<z<1

has the property
(a) y(z)—=0 as z— 407 (b) y———g)—>0asm—>+0?
Investigate the same question for the differential equation
' 1
Y = f(:z:)ylog; for 0<z<1,

where only solutions with 0 < y(z) < 1/e are taken into consideration.

VII. Exercise. The Riccati Differential FEquation and Linear Differen-
tial Equations of Second Order. Show that the Riccati differential equation

Y + g(z)y + h(z)y® = k(z)
with g, h € C°(J), h € C}(J), h(z) # 0 in J, can be transformed into the linear

differential equation of second order

/
o+ ( - %) —khu=0 (13)

using the transformation

uw) = exp ( [ Waly(o) i)

and that conversely, a positive solution u of (13) produces a solution y =
(logu)' /h of the Riccati equation. Use this relationship to solve the initial
value problem

¥ —y+e"y’ + 577 =0, y(0) =7.

Supplement: The Generalized Logistic Equation.

We consider a generalization of the logistic differential equation ' = u(b —
cu), where, in contrast to 1.XIII, b and c depend on ¢. Our objective is to derive
some theorems on the asymptotic behavior of the solutions as ¢ — oo and on
the existence of a class of distinctive, in particular periodic, solutions.
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VIII. The Generalized Logistic Differential Equation
U/ (t) = u(b(t) — c(t)u). (14)

The functions b and ¢ are assumed to be continuous and positive in R. We
consider only positive solutions.

Equation (14) is a Bernoulli equation. If u is a solution with u(7) = ug > 0,
then by III, the function y = 1/u satisfies

1
¥ =-by+ec, y(r)=-—=yo (15)
U
and hence
t
y(t) = e~ B (yo + / c(s)eB(‘) ds) (16)
T

with
- B = / " b(s) ds.

Since u = 1/y, we obtain the following results.

(a) A solution u with u(7r) > 0 exists and is positive for all ¢ > 7. The
solution also remains positive “to the left.” Either it exists for all £ < 7 or there
exists a t; < 7 such that u(t) — oo as t — t;+. The latter case occurs if there

T
is a t; such that y(t1) =0, i.e., if yo < / c(s)eB) ds.
—00

(b) If u, v are two solutions with u(7) < (), then u < v in their common

interval of existence. If u(tg) = v(%p), it follows from (16) that u = v.

Theorem 1. Let tlim B(t) = oco. If u is a positive solution, then
— 00

tlingou(t) = tllxgo %’

provided that the limit on the right side exists.

Proof. This theorem is a substantial generalization of 1.XIII.(a). It can
be proved by writing y as the quotient Z(t)/N(t) with N(t) = eB®). The
result then follows using 'Hospital’s rule; since both B(t) and N(t) tend to oo,
the rule applies. One gets Z'(t)/N’(t) = ¢(t)/b(t), which gives the conclusion
immediately. N

In what follows, a function g will be called T-periodic (T' > 0) if it is defined
on all of R and g(¢ + T') = g(t) holds for all ¢t € R.

Theorem 2. If the coefficients b and ¢ are T-periodic, then there exists
ezactly one positive T-periodic solution of (14).
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Proof. 1t is sufficient to show that there is exactly one solution with u(0) =
u(T) > 0. Under this assumption v(t) := u(t + T') is a solution of (14) with
v(0) = u(0). Then y = 1/u and z = 1/v both satisfy the same linear differential
equation and have the same initial values. It follows that y = z and hence u = v
i.e., u is T-periodic. If we set 7 = 0 in (15), then the relation u(0) = u(T') leads
to the equation

T
Yo (eB(T) - 1) = / c(z)eB® ds > 0,
0

which can be solved uniquely for yo because e2(T) > 1. - |

In the classical case (b, ¢ constant), the constant solution u = b/c is distinc-
tive. It is the only solution for which both the limits as t — oo and as t — —o0
are positive. Moreover, as t — oo, all positive solutions tend to this solution; cf
1.XIIIL.(a). There also exists a distinctive solution in the general case. To inves-
tigate it we introduce a new concept. We call a function g : R — R positively
bounded if there are two positive constants «, §, such that a < g(t) < 8 for
t € R. Clearly, if g1, g are positively bounded, then so are g1g2, g1 + g2, §1/92-

Theorem 3. Let the coefficients b, ¢ be positively bounded. Then equation
(13) has ezactly one positively bounded solution u* on R; and if u is any positive
solution, then u(t) — u*(t) — 0 as t — oo.

Proof. Let a, 3,4, 6 be positive constants with a < b< f,v<¢/b<§inR.
The first set of these inequalities leads to the estimates

at < B(t)< Bt for t >0, at> B(t) > ft for t <0

and the second leads to
t

t ¢
I(t) := / c(s)eP® ds < 6/ b(s)eB) ds = §eB() = 8eB®),
-0

—00 —00

and similarly I(t) > veB®).

‘We have to show that the linear equation (15) for y = 1/u has one and only
one positively bounded solution. Let y* be the solution (16) with yo = I(0) and
7 =0, that is,

t
y(t) = e'B(t)/ c(s)eB®) ds.
-0
(This, by the way, is the smallest positive solution that exists in all of R; cf. (a).)
From the previous estimates it follows that v < y* < §. Since the solution
z(t) = e"B(®) of the homogeneous equation is unbounded and all solutions of
the nonhomogeneous equation are given by y = y* + Az, it follows that y* is the
only positively bounded solution. | |

Ezercise. Prove the last assertion in Theorem 3.
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§ 3. Differential Equations for Families of Curves.
Exact Equations

I. The Differential Equation for a Family of Curves in Various
Forms. If f(z,y) is defined and continuous in a domain D (open connected
set), then the solutions to the differential equation 3’ = f(z,y) form a family
of curves that covers D (that is the geometric meaning of the Peano existence
theorem, which will be proved in § 7).

Conversely, if a given family of curves covers D simply, then it is possible
to find a first order differential equation such that the curves in the family are
the solutions of the differential equation. For proof, suppose (%,7) € D is an
arbitrary point and y = ¢(z) is the curve in the family that goes through this
point. If we define the function f by setting f(Z,7) = ¢'(Z), then clearly each
curve in the family is a solution of the differential equation ¥’ = f(z,y) (this
procedure was already mentioned in 1.IIT).

Ezample. The family of concentric circles
?+y*=r® (r>0)
satisfies the differential equation

y,+§=0, (1)

since the slope of the line passing through the origin and the point (z,y) is
m = y/z, and the line perpendicular to it (which is tangent to the circle) has
slope —1/m. Technically speaking, the functions

y(z;r) =xVr2—22 (F >0 is a parameter)

and not the circles are solutions to the differential equation (1). Moreover, the
equation holds only in the open interval —r < z < r because the derivative is
infinite at the points £ = *r. Similar problems occur whenever curves with
infinite derivatives (and hence vertical line elements) are present.
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Such difficulties can be overcome by representing the curves in a symmetric
form, that is, either in implicit form F(z,y) = C or in parametric form = = z(t),
y = y(t). A symmetric representation of a first order differential equation is
given by

g(z,y)dz + h(z,y)dy = 0, (2a)
or, equivalently, by

9(z,y)E + h(z,y)y =0 for z=uz(t), y=y(t), (2b)
where £ = dz(t)/dt, y = dy(t)/dt. Here it makes sense to assume that

@ +h2>0 (3)

(note that g = h = 0 in a domain D implies that every differentiable curve lying
in D is a solution of (2)). Further, we require solutions in parametric form z(t),
y(t) to be continuously differentiable and satisfy

(#(2))* + () > 0, @

which implies that the curve is a smooth curve. This assumption is also a
natural one. It excludes solutions of the form z(t) = const., y(t) = const., and
it guarantees that locally (i.e., in a neighborhood of each point of the curve) the
curve can be written explicitly in the form y = ¢(z) or z = ¥(y) with ¢, ¥ in
ct.

The differential equation (2b) is equivalent to

9(z,y) + h(z,y)y' =0 for y=y(z) (y' = é%cl) (2c)

in the following sense: If y(z) is a solution of (2c), then this explicit represen-
tation can be interpreted as a parametric representation ¢ = t, y = y(t), for
which (2b) holds. Conversely, if z = ¢(t), y = (t) is a solution of (2b) and
if ¢(to) # 0, then ¢ # 0 in a neighborhood U of £y, and the inverse function
t = t(z) exists. The part of the curve that corresponds to values of t € U can
be expressed explicitly in the form

y =y(z) = ¥(t(z))-
The function y(z) is a solution of (2c) because

dt(z) _ $(t(z)
ds ~ §(i(z)

In a like manner, if ¥(to) # 0, then (2b) is equivalent to the differential equation

y'(2) = ¥(t(z))

9(z, y)g% + h(m, y) =0 for z==z(y). (2d)

The case ¢(to) = (o) = 0 is excluded by the requirement (4).
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Summary. The solutions obtained from equations (2b), (2c), and (2d)
are indeed different functions, but they give exactly the same curves with the
exception that for (2¢c) those curve points with vertical tangents and for (2d)
those curve points with horizontal tangents are missing. Consequently, whenever
the emphasis is on the geometric point of view, that is, when one is interested in
solution curves, there is no real difference between the four forms of the equation
(22), (2b), (2c), (2d).

Finally, we note that equation (2b) is invariant with respect to a change
of parameter: If z(t), y(t) is a solution of (2b), then so is Z(7) = z(h(7)),
§(r) = y(h(7)), as long as h(7) € C.

In Example 1, the symmetric form of differential equation (1) is

zdz +ydz = 0.

II. Exact Differential Equations. A differential equation of the form
(2) is called an ezact equation in the domain D if (g, k) is a gradient field, i.e.,
if there exists a function F(z,y) € C'(D) such that

Fr(z,y) = 9(z;y), Fy(z,y) =h(z,y) in D. (5)

The function F is called a potential function for the field (g, k).

The total differential of a function F is defined as dF = F dz + F,dy. Thus
a differential equation is exact in D if and only if it can be represented in the
form

dF(z,y) =0 with F e C'(D). (6)

Once a potential function has been determined, the problem of integrating
the differential equation (2) is essentially settled.

Theorem. Let the functions g, h be continuous in the domain D. If the
differential equation (2) is ezact in D and if F € C'(D) is a potential function,
then the function pair (z(t), y(t)) € C*(J) (with values in D) is a solution of the
differential equation (2b) if and only if F(z(t),y(t)) is constant in the interval
J. Likewise, y(z) is a solution of (2c) if and only if F(z,y(z)) is constant, and
a corresponding statement holds for (2d).

Additionally, if (3) holds, then by solving

Flz,y)=a (7)

one obtains all solution curves, and exactly one solution curve passes through
each point of D.

The proof follows from the identity
. . . . d
9-&+h-g=Fad+ Fyy = —F(z(t),y(t))-

Thus the pair (z(t),y(t)) is a solution of (2b) if and only if F(z(t),y(t)) is
constant.
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The second part of the conclusion is a consequence of the implicit function
theorem. Note that by (3) and (5), F2 + F2 > 0in D. Let (§,7) € D and
F(&,m) = a. If Fy(§,n) # 0, for instance, then by the implicit function theorem
F(z,y) = « has a unique solution of the form y = y(z) € C! in a neighborhood
U of the point (£,7), and differentiation of the identity F(z,y(z)) = « gives
equation (2c), i.e., ¥ is a solution. |

Ezample.
(y2e® + 3z2y)dz + (2% + (1 + zy)e™)dy =0
is exact in R%. A potential function is
F(z,y) = y(e™ + 2°).
The question whether a differential equation is exact and if it is, how to

find a potential function is answered in the following well-known result from
analysis.

III. Theorem on Potential Functions. If g(z,y), h(z,y) are contin-
uvously differentiable in the simply connected® domain D, then there exists a
potential function F(z,y) satisfying (5) if and only if

gy=hgy in D (8)
holds.

The potential function is obtained as a line integral

(%.,9)
F(z,3) = / {9(z,) dz + h(z,3) dy}

(&m)
where (£,7) € D is a fixed point and the integration is carried out along an arbi-

trary C'-path connecting (£, 7) to (Z, 7). Equation (8) is precisely the condition
required to guarantee that this integral is independent of the path.

IV. Integrating Factors (or Euler Multipliers). The differential equa-
tion
ydz+2zdy=0 (9)
is not exact. However, it can easily be made an exact differential equation

(in the domain z > 0) by multiplying the equation by 1/4/z. The resulting
differential equation

—f/’%dm+2\/§dy=0

is exact, and a potential function is given by
F(z,y) =2yvz (z>0).

An exact differential equation can also be obtained by multiplying (9) by ¥:
v dz +2zydy =0, giving F(z,y) = zy°.

58ee A.VI for a definition of simple connectedness.
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V. Definition and Theorem. If the functions g(z,y), h(z,y) are con-
tinuous in D, then a continuous function M(z,y) # 0 defined in D is called
an integrating factor or Euler multiplier for the differential equation (2) if the
differential equation

M(z,y)g(z,y) dz + M(z,y)h(z,y) dy =0 (10)
15 ezact.
If D is simply connected and g,h, M € C*(D), then (Mg), = (Mh), i.e.,
M,g+ Mg, = Mgh + Mh, (11)

is necessary and sufficient for M to be a multiplier.

This follows immediately from Theorem IIT. Note that in general it is a dif-
ficult task to find an integrating factor M, since M is the solution to the partial
differential equation (11). However, once a multiplier M is found, all solutions
of equation (2) (which is equivalent to (10)) can be found by integration; cf.
Theorems IT and IIL.

Moultipliers Depending on Only One Variable. Sometimes a multiplier can
be found that depends only on z (or only on y). The ansatz M = M(z), for
instance, leads to

—h M
9y A Z = e (log M)'. (12)
Thus an integrating factor depending only on z exists if and only if the left-hand
side of (12) depends only on z. An important example is the linear differential
equation; see Exercise VIIL.(e).

Example.
(2z% + 2zy® + Ny + (3y* + z)y = 0.
The differential equation is not exact; however (cf. (12)),

gy_hz
h

and hence M = ¢*’ is an integrating factor. A potential function F(z,y) can
be determined from equations (5), which for this example are given by

= 2z,

F = ezz'y(2x2 +2my? +1), Fy= &’ (3% +z).
From the second of these equations it follows immediately that
F(z,y) = (4° +ay) + ¢(a),

where ¢(z) is an arbitrary function of z. This function ¢(z) must be determined
such that the first of the two equations also holds. This is the case, as one can
check, if ¢ = 0. Thus the solutions are given by

F(z,y) =ye* (z+17) = C.
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Y

(z,9)

> T

(0,0)

Note that it is just about as easy to get the potential function from the line
integral in Theorem III. Choosing (£,7) = (0,0) and taking the path given in
the figure, one sees that the integral vanishes along the z-axis, since g = 0 there
and dy = 0, and that the integral over the vertical segment gives precisely the
function F' obtained earlier.

VI. A System of Two Autonomous Differential Equations. In
connection with equation (2), we consider the system of two differential equa-
tions

&= h(:B,y), y = —g(:z:, y) (13)

for the pair of functions (z(t),y(t)). Such a system is called an autonomous
system, because the variable ¢ does not appear explicitly in the right-hand side.
A consequence of this fact is the following property:

(a) If (z(t), y(t)) is a solution, then so is (z(t + c), y(t + c)) (c arbitrary).

Phase Plane and Phase Portraits. A solution (z(t),y(t)) of the system
(13) can also be interpreted as the parametric representation of the correspond-
ing solution curve in the zy-plane. In this context the zy-plane is also referred
to as the phase plane, and the curves generated by the solutions are called the
trajectories (or the orbits) of the differential equation. A sketch of several of
these trajectories is called a phase portrait or phase diagram of the system (13).
Arrows are added to the trajectories to give the orientation of the curve in the
sense of increasing t. In addition, the velocity of motion, that is, the vector
(#(t),9(t)), can also be given approximately by placing special dots along the
trajectory at solution points corresponding to a sequence of equidistant t-values.
Where the dots are close together, the solution is changing slowly, where they
are far apart, the change is correspondingly faster.

A phase portrait gives an excellent overview of the qualitative behavior of
the solutions. Thus it is of great significance that in some examples the trajec-
tories can be given without first determining the solutions. What is needed is a
function F(z,y) that is constant along each solution (i.e., on each trajectory).
Such a function is called a first integral of the system (13). The trajectories are
then given implicitly by the equation F(z,y) = a.
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There is a relationship between equations (2) and (13). A solution of (13) is
clearly a solution of (2b) and also, more generally, of the equation

M(za y)g(z: y)z + M(za y)h(za y)y =0. (14)

If M # 0 is an integrating factor that makes this equation exact, then there
exists a potential function F' with the desired property. To make this precise:

(b) If equation (14) is exact and F is a potential function, that is, if grad F =
(Mg, Mh), then F is constant along solutions of the system (13). The trajecto-
ries of the system (13) are obtained as the level sets

Ko =F(a)={(z,9) € D: F(z,y) = a}.

Ezample. For the system £ = y, y = —z, the corresponding equation (2) is
zdzr+ydy = 0. The function F(z,y) = 2+ y? is constant along each solution,
and therefore the trajectories are circles centered at the origin.

Some questions arise at this point.

(c) If the level sets K, are curves, is it possible to formulate general theorems
about their structure? Locally, if grad F' # 0, then K, is a curve because of the
implicit function theorem. Global statements, particularly statements about
closed Jordan curves, are proved in the Appendix in sections A.VII-VIIL

(d) Does a solution that starts on a level curve always trace out the entire
curve, or can it just stop somewhere? Statements related to this question are
proved in A.IX.

(e) How can the direction of the arrows on the trajectories be obtained?
This can usually be done without difficulty by considering the sign of g and h.
The markings of points for equidistant ¢-values, on the other hand, have to be
obtained numerically.

As an illustration of these ideas, we will consider a famous example from
biomathematics.

VII. The Predator-Prey Model of Lotka—Volterra. We consider
an ecological model consisting of two species, a predator species and a prey
species, which goes back to the American biophysicist Alfred J. Lotka (1880-
1949) and the Italian mathematician Vito Volterra (1860-1940). The size of the
predator population will be denoted by y(t), that of the prey by z(t). In the
system of differential equations

t=z(a—by), y=y(-c+dz), (15)

which describes their interaction, a, b, ¢, d are positive constants. The prey
population is assumed to have ample resources (e.g., food) so that in the absence
of predators (y = 0)

growth rate = birth rate — death rate = a > 0,

and the population increases in size according to the exponential growth equa-
tion Z = az. In the presence of predators the growth rate reduces from a to a—by
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for obvious reasons; in fact, it can become negative. The situation is different
for the predator population. Without prey (z = 0), the predator population
decreases in accordance with the equation for exponential decay y = —cy (be-
cause without an adequate food supply, the death rate exceeds the birth rate),
but when the prey population is present, the improvement in the food supply
enlarges the growth rate to —c+dy, which can be positive if the prey population
is large.

The following analysis of equation (15) begins with an application of the
existence and uniqueness theorem 10.VI1. From this theorem it follows that for
every initial condition (z(0),y(0)) = (£,m), there is exactly one solution of
(15). Clearly, there is exactly one positive constant, or stationary, solution
(‘T(t)v y(t)) = (IO; yO) = (C/d, a’/b) —

In the notation of (13), g = y(c — dz) and h = z(a — by). We claim that

1
M(z,y) = = is an integrating factor. Indeed, the functions
g=Mg=S—-d, h=2-b
z Y

satisfy the condition gy = h; = 0 from Theorem III. A potential function is
easily found:

F=G(z)+ H(y) with G(z)=clogz —dz, H(y) = alogy — by.

The function G is strongly monotone increasing in the interval (0, zp), strongly
decreasing in the interval [zg, 00), and it tends to —oo as z — 0+ and as T — oo;
H behaves in the same manner on the intervals (0, o), ¥0,00). It follows that
F has a maximum at (Zo, ¥o),

F(-T;y) < F(IO;yO) =: B for z,y >0, (Ia y) # (-’EO;yO);

and grad F' # 0 there. From Theorem II and Theorems A.VIII (with A = —o0)
and A.IX in the Appendix, we immediately obtain the following

Theorem. For —oo < a < B, the level sets K, = F~(a) are closed
Jordan curves that surround the stationary point (zo,yo). All positive solutions
(z(t),y(t)) of the Lotka—Volterra equations are periodic; z(t) has its largest and
smallest values when y(t) = yo, and y(t) has its largest and smallest values when
z(t) = zo.

We briefly describe the evolution of a solution (z(t), y(t)) with initial value
(z0,m), m < yo, at t = 0. The solution traces out the curve K., where a =
F(zp,n). When t = 0, the predator population y is at its lowest point; as ¢
increases, y begins to increase, while at the same time the growth of the prey
population = slows and comes to a halt at the value y = yp. At this point
T begins to decrease and y continues to grow, but more slowly, reaching a
maximum when z sinks to the value zg, etc.

It can be shown directly, without appealing to A.IX, that the above solution
actually makes a complete rotation in finite time and does not just come to a halt
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somewhere on the curve. Since the solution values (z(t), y(t)) lie on a bounded
curve K, the solution itself is bounded; thus it exists for all ¢ > 0 by Theorem
10.VI. As long as y(t) < yo, z(t) is positive, whence z(t) > zo for small positive
t. But then from z > z + € it follows that § > y(—c + d(zo + €)) = dey > 0.
Thus y > 7, and hence y > den > 0. Therefore, y takes on the value yo at a
time £, where z(¢;) > zo. In a similar manner, one shows that the remaining
three parts of the curve K, are traced out in this way and that there exists
a smallest positive number T with (z(T),y(T)) = (z(0),y(0)). By V.(a) the
function (Z(t), §(t)) = (z(t + T),y(t + T)) is also a solution of the differential
equation with the same initial conditions at ¢t = 0 as (z(t),y(t)), and by the
uniqueness theorem both solutions must be identical, i.e., the solution under
consideration is periodic with period T.

(a) Ezercise. Consider the mean value (Zm,ym) of a T-periodic solution
(z(t), y(2)) of equation (15); i.e.,

1 [T 1 [T
:z:m=T/o z(t) dt, ym=§;/o y(t) dt.

Show that z,, = zo, ym = yo. Thus the mean value of a solution over a period
is equal to the value of the stationary solution.
Hint: Integrate £/z and g/y from 0 to T

VIII. Generalized Predator-Prey Models. Exercise. (a) Show
that the same qualitative statements hold for the nonnegative solutions of the
system

& =gz(a~by?), §=y(—c+dz?)

as for the Lotka—Volterra model; cf. Theorem VI. Is VI.(a) still valid?
The statements of Theorem VI can be essentially carried over to more general
systems of the form

i=¢(z)aly), §=-v(u)B(z) (16)

and, in fact, can be carried a step further.
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(b) We consider an autonomous system of the form
& =W(z,y)hy), ¥=-W(z,9)i0) (17)

with W > 0 (in the case of equation (16), W = ¢(z)(y)). Let the functions
g, h be continuous and strongly monotone decreasing in [0,00) and let each
function have a positive zero, say §(zo) = 0, h{yo) = 0. Show directly that:

(i) The function F(z,y) = G(z) + H(y) with
T Y _
6(@) = [ gls)ds, H) = [ Rs)ds
zo Yo
is constant along each solution of the system (17).

(ii) If it is assumed that G(0+) = H(0+) = —oo, then the statements of
Theorem VI are valid. In particular, all positive solutions are periodic.

(iii) Using g(z) = 2(1~zx), ~(y) = 2(1 —y), W =1 as an example, discuss how
the behavior of the solutions changes if the hypothesis in (ii) is violated.

IX. Exercises. (a) Determine all solutions of the differential equation

(cos(z + y?) + 3y) dz + (2y cos(z + y?) + 3z) dy =0

in implicit form. Discuss (and sketch) the solution through the origin.
(b) Determine all solutions of the differential equation

(zy? —y%)dz + (1 —zy?)dy = 0.

(There is an integrating factor M = M (y).) Sketch the direction field and draw
some solution curves (with the help of the isoclines for the slopes 0, 1, —1, oo,
for instance). Determine the solution through the origin.

(c) Determine all solutions of the differential equation

y(l+zy)dz =z dy

in explicit form. There exists an integrating factor M = M(y).
(d) Derive a differential equation for the family of circles

(z-A2+42=2% (A>0)

and draw a sketch showing some of the solutions.
(e) Find an integrating factor M = M(z) for the linear equation

v +p(z)y = q(x).

and find the associated potential function. Compare the solutions obtained from
F(z,y) = a with Theorem 2.II.
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§ 4. Implicit First Order Differential Equations
We consider the implicit differential equation
F(z,y,9') = 0. 1)

Throughout this section, we assume that the function F(z,y,p) is continuous
in a domain D of three-dimensional space (without making specific reference to
the fact each time).

Just as in the case of explicit differential equations, the differential equation
(1) defines a direction field. It is the set of all line elements (z, ¥y, p), for which

F(z,y,p) = 0. (2)

The new feature in the case of implicit differential equations is that now a
point (Z,%) can be a “carrier” of more than one line element, in contrast to the
situation for explicit differential equations. This happens whenever the equation
F(Z,7,p) = 0 has more than one solution p.

I. Regular and Singular Line Elements. If F(Z,7,5) = 0 and if
equation (2) can be rewritten in a neighborhood U ¢ R3? of the point (Z, 7, §)
in a unique way in the form

p= f(z,y) with a continuous f(z,y) ((z,y) € V(Z,9)) (3)

(this means that the line elements in U are precisely the triples (z,y, f(z,y))
with (z,y) € V), then (Z, 7, p) is called a regular line element. All line elements
that are not regular are called singular. A solution curve y(z) of (1) is called
regular, respectively singular, if all of the line elements (z,y(z),y'(z)) are reg-
ular, respectively singular. Finally, (z,y) is a singular point of the differential
equation if there exists a singular line element (z,y, p).

Theorem. If the functions F(z,y,p) and Fy(z,y,p) are continuous in a
neighborhood of (Z,9,2) and if

F(Z,5,p) =0, Fp(%,9,p)#0, (4)
then (Z,9,D) is a regular line element.

The implicit function theorem applies under the hypotheses of this theorem
and implies that a representation in the form (3) is possible.
It follows that the conditions

F(jsg’ﬁ) = Fp(j’g’ﬁ) =0 (5)

must hold for singular line elements (Z, 7, 7). Note, however, that a line element
that satisfies property (5) is not necessarily singular. For instance, every line
element of F(z,y,p) = [p — f(z,y))? is regular (for continuous f), since the
equation can be uniquely expressed in the form (3), even though (5) holds for
all line elements.
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Solation curves of the
differential equation y'2 = 4z?

Ezample.
y? = 4z?.

The equation F(z,y,p) = p*> — 4z = 0 is equivalent to p = +2z, and thus the
line elements are the triples (z,y, +2z); the solutions of the differential equation
are the parabolas y = C +z? and y = C — z2. The only place where (2) cannot
be written (locally uniquely) in the form (3) is the y-axis; i.e., the line elements
(0,,0) are singular, as are the points (0,y).

II. Parametric Representation with ¢’ as the Parameter. In the
following sections we will discuss some examples of implicit differential equations
that can be solved in closed form. The ansétze that are used here all have the
common property that they lead to solution curves with a special parametric
representation in which p = ¢/ is the parameter.

This will now be explained. Consider pairs (z(p), y(p)) of continuously dif-
ferentiable functions in an interval J with the property

¥(p) =p - (p). (6)

Here ¢ = dx/dp, y = dy/dp. If (p) # 0, then the curve represented by this pair
has slope p at the point (z(p), ¥(p)). Indeed, it is well known that the curve can
be represented in explicit form y = ¢(z), and moreover, from y(p) = ¢(z(p))
and (6), it follows that

y(p)
¢ (z == =D 7
o) =45 )
Conversely, suppose y = ¢(z) is an arbitrary curve in explicit form. A para-
metric representation that satisfies condition (6) can be derived by solving the
equation p = ¢'(z) for z. If we denote the inverse function of ¢’ by z(p) and
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set y(p) := ¢(z(p)), then (z(p), y(p)) is a parametric representation of the curve
that satisfies the relation (6),

¥(p) = ¢(z(p)) - &(p) = p - £(p),

as was expected.

Two Ezamples. (a) y = z3 for £ € R. From the relation p = 322 > 0, we
obtain, using the procedure described above, that

z = £(p) = ++/p/3
y =n(p) = £3(p)

Thus each of the two branches £ > 0, z < 0 of the cubic parabola has a
parametric representation with y' = p as parameter that satisfies the condition

(6)-

(b) y =sinz, 0 < z < «. From p = cosz it follows that

(r20).

Z = arccosp -

(-1<p<L1).
=./1- p2
What is the corresponding representation in the interval 7 < z < 277

Such a representation of a curve is possible only if p = ¢/(z) can be solved for
z (as is the case if ¢” # 0). In particular, straight lines cannot be represented
parametrically in this manner. We will have to be on the alert for this situation
later on in the discussion.

The outline of a solution procedure based on the above ideas goes something
like this. An implicit differential equation in the form (1) is given. Denote
the solution by ¢(z). If the solution curve has a parametric representation
(z(p),y(p)) with property (6) (this would be the case if ¢"” # 0!), then the
substitution z = z(p) into F(z, #(z), ¢'(z)) = 0 gives the equation

F(z(p),y(p),p) =0 (8)

because of (7). The functions z(p), y(p) can now be determined using the two
equations (6) and (8).
The following types of equations can be solved using this procedure.

I1I1. z=g(y')

Let J be an interval and g € C(J). Here z(p) = g(p) is given and y(p) is
obtained from (6). Thus the solution curves are given by

z(p) = g(p),
{y@=0+/m@@-

Clearly, the set of solutions does not include line segments.
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Iv. y=9(@)
Let g € C*(J). Similar to the result obtained in III, it follows from (6) that
y(p) = g(p),

z(p)=0+/¥dp-

In addition, the constant function y = g(0) is also a solution, provided that
0elJ.

V. y=zy +g(y') | Clairaut’s Differential Equation.’

Let g € C1(J). Differentiating y(p) = z(p)p + g(p) gives the relation
y=pi+z+4,
and hence, using (6), we have £+ g = 0; i.e.,

{ z(p) = -g(P):
y(p) = —pd(p) + 9(p)-

However, this is only one solution. It is easy to check that the straight lines
y=cz+g(c) (c€J) (10)

are also solutions. It is also not difficult to verify that the curve (9) touches each
of the lines (10) at the point (z(c),y(c)) corresponding to the parameter value
p = c and that both have the same slope m = c at this point. The lines (10)
form a set of tangents to the curve (9), and the curve (9) is called the envelope
of the family of lines (10).

What about the conditions that must be met before (9) defines a solution?
If g € C2(J), then clearly z,y € C*(J). Further, if § # 0, then £ # 0 in J,
i.e., the curve (9) can be explicitly represented in the form y = ¢(z) with a
continuously differentiable ¢. If one notes that ¢(z(p)) = y(p), then the proof
that ¢ is actually a solution follows from the second line of (9). It can be further
proved under these assumptions that all of the solutions to the Clairaut equation
have been found, i.e., that every solution is either the function ¢ obtained from
(9), one of the lines (10), or a function constructed by splicing ¢ to one of
the lines (10). The proof (which is not exactly short) can be found in Kamke
(Differentialgleichungen, Vol. I, pp. 52-54).

(9)

Ezample.
y=zy +e
The solution curves are the lines

y=cz+e° (ceR)

6Clairaut, Alexis Claude, 1713-1765, French mathematician and astronomer.
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A/

e

Solution curves of Clairaut’s equation y = zy’ + eV’

and their envelope

V20T0e Gem |y <o,

VI y=zf(¥')+g(y') | D’Alembert’s Differential Equation.”
Let f,g € C'(J). Differentiating y(p) = zf(p) + g(p) to get
g=i&f+zf+g
and then using (6) leads to the linear differential equation
. 2f®) + i)
p—flp) ’

from which z(p) and hence also y(p) = zf(p) + g(p) can be determined in closed
form. A line y = cx + d is a solution if and only if f(c) = c and d = g(c).

Ezample. Let
1 4
y=x(y'+—,> +9".
Y
Differentiation of y(p) = z(p)(p + 1/p) + p* leads to
. 1 -
y=¢ (p+;> +xz(1 —p~2) + 4p%,
or, since ¥ = pz,

. 1 4
T=z|-—p|—4°
G

7D’Alembert, Jean Le Rond, 1717-1783, French mathematician, philosopher, and writer.
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A solution to the homogeneous equation is z(p) = el°6P—P*/2 = p.e?/2 4
solution to the inhomogeneous equation

5(p) = pe /2 - (~4) / /%% dp.

The substitution s = p?/2, ds = pdp, transforms the integral into 2 [ se’ds =
2¢*(s — 1), which gives Z(p) = 8p — 4p®. Thus the general solution reads

2(p) = Cpe™"/? 4 8p — 45°, y(p) = 2(p) (p+§)+p‘* (CeR).

VII. Integration by Differentiation. This heading refers to the fol-
lowing procedure for solving a differential equation F(z,y,y’) = 0. If there
is a solution of the form (z(p),y(p)), then F(z(p),y(p),p) = 0 holds, and the
equation

Fo-&+F, g+ F,=0
follows by differentiation. Using this relation together with (6) gives the follow-
ing equations for the functions z, 3:
) - ply
=—-—2? =P 11

F+pF, " F+pF, 1)
This is a system of two differential equations for the two unknown functions
(z(p), ¥(p)). In many cases the variables are separated; i.e., only z(p) [or y(p)]

appears on the right-hand side of the first [or second] differential equation. Two
examples where this kind of separation occurs are

[=0tw)]=2- ST ) = Glalo),p)
2= H@) | 0= T2 ) = HO ).

The types of equations discussed above in III, IV, and VI are special cases of
this type of equation in which the new differential equation for Z, respectively
7, can be solved explicitly.

VIII. Exercises. Determine all the solutions for the following Clairaut
differential equations in explicit form. Sketch some of the solution curves!

(@) y=zy -y - 1.

(b) y==y' +y*

(c) Show that all solutions of the differential equation
y=zy +ay +b (a, b constant)

are lines through a fixed point. Is the “envelope” given by (9) a solution?
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Determine the solutions of the following differential equations in parametric
form:

@) y=zy* +In(y?),

€ z=y' +1/¥) +y°.



Chapter 11
Theory of First Order
Differential Equations

§ 5. Tools from Functional Analysis

Many questions in the theory of differential equations can be answered in a
particularly elegant manner using general concepts of functional analysis. In this
and later chapters, functional-analytic methods will be used to derive theorems
on existence, uniqueness, and dependence of solutions on parameters. We begin
by introducing the concept of a Banach space.

I. Vector Spaces. A set L = {a,b,c,...} is called a vector space or
linear space if an addition and a “scalar” multiplication (scalars are real or
complex numbers) are defined (i.e., to each pair of elements a,b € L there is
associated a unique element a + b € L, and to each element a € L and each
number A, an element Aa € L) and if these operations satisfy the following laws:

The set L is an abelian group with respect to addition, that is to say, the
following rules hold for a,b,c € L:

(a+b)+c=a+(b+c)
a+b=>b+a,

and there is a unique zero element, denoted by 6, and to each a € L a unique
inverse, denoted by ~a, such that

53
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For a,b € L and arbitrary numbers A, u, scalar multiplication satisfies the rules
AMa+b) = da+ b
(A +p)e = da+pa
Mua) = (Au)a
l-a=a
0-a =0.

The space is called a real or a complez vector space, depending on whether the
scalars A, p come from the field of real or complex numbers.

A nonempty subset of L that (with. the previously described operations) is
again a linear space is called a (linear) subspace of L.

II. Normed Space. Let L be a real or complex linear space. A real-
valued function ||a||, defined for a € L, is called a norm if it has the properties

6]l=0, Jla||>0 for a#06 definiteness,

[Aall= A - llall homogeneity,
lla + bl < llall + [1B]| triangle inequality.
The space L is sometimes said to be “normed” by || - ||. We have used a special

symbol @ here for the zero element of L in order to avoid confusion with the
number 0. From now on we shall take the commonly used symbol 0 for the zero
element in any vector space; the reader should have no problem with equations
like 0 - @ = 0 from Section I.

For future reference we mention two simple consequences of the triangle
inequality:

||a.1 ++an" < "a1"++ ”an") (1)
llall = 6ll] < fla—b. (2)

Note that a norm defines a distance function (or metric) p(a,b) = |la — b]|
that satisfies the axioms of a metric space:

pla,b) >0 for a#b, p(a,a) =0 positivity,

p(a,b) = p(b, a) symmetry,

p(a,b) < p(a,c) + p(c, b) triangle inequality.
Thus a normed space is a metric space. Using this “canonical” distance function
and proceeding in a natural manner, we can extend the definition of familiar
mathematical objects from the Euclidean space R™ to any normed space L:

balls, e-neighborhoods, neighborhoods, interior points, boundary points, open
and closed sets. . . and, not least, convergence.
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I11. Examples. (a) The n-dimensional Fuclidean space R™. This space
is the set of all n-tuples of real numbers

a=(ay,...,an) = (a;).
Addition and scalar multiplication (A real) are defined by
a+b=(a;+b), Ara= (/\a,-).

The space R™ can be normed in many ways, for example, by any one of the
following:

lale = /a2 +---+a2 Euclidean norm,
la| = [aa|+ - +|anl,
|a] = max; |a; mazimum norm.
In this text, elements from R™ are denoted by boldface italic type and norms
in R™ by the ordinary absolute value symbol.
(b) The n-dimensional complez, or unitary, space, C" is defined in the same

manner as example (a) except that a; and A are complex numbers. In the
definition of Euclidean norm, it is necessary to use absolute value bars:

lale = Vlaa* +--- + |an|*.

(c) Let K C R™ be a compact set and C(K) the set of all continuous real-
valued functions f(z) = f(z1,...,zn) on K. Addition A = f + g and scalar
multiplication k = Af are defined for f,g € C(K) and real numbers X in the
natural way:

h(z) = f(z) + g(z); k(z)=Af(z) for z€K.
As a norm one can choose, for instance,
I fllo = max {|f(z)| : = € K} mazimum norm,

or, more generally, a weighted mazimum norm

1l = sup {| f(z)Ip() : = € K},

where p(z) is a given, fixed function with 0 < a < p(z) < f < .

(d) This final example is needed in the investigation of complex differential
equations. Let G C C be a domain in the complex plane and Hy(G) the set
of holomorphic (i.e., regular analytic) and bounded functions u(z) : G — C. If
p(z) is a real valued function in G and 0 < & < p(z) < S for suitable positive
constants ¢, 3, then

llull = sup {|u(2)lp(2) : z € G} -

defines a norm in Hyp(G).
It is easy to verify the norm properties in each of these examples. The norms
are homogeneous, nonnegative, they vanish only for the zero function, and they
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are finite. The triangle inequality is well known for the Euclidean norm |[a,,
and easily verified for the other two norms in (a). In function spaces like (c)
and (d), the triangle inequality holds under quite general hypotheses: G can be
any set, the functions f, g, p need to be defined on G; f and g can be complex
valued, p real valued and > 0. If one sets

£l = sup{|f()lp(z) : = € G},

then

|f(2) + 9()|p(z) < |£(2)lp(z) + |g(z)Ip(z) < IIf]| + llgll for = € G.

Therefore, the triangle inequality ||f + gl| < [ f|l + [lg]| holds if the norms of f
and g are finite.

IV. Convergence and Completeness. The notion of the convergence
of a sequence of numbers can be extended in a natural way to a normed space
L. A sequence 1, T2, ... of elements of L converges “strongly” or “in the
norm” to an element = € L if

|zn —z|| =0 as n— oo.
In this case, we also write

Zpn—c (n—o00) or lim z,=1z.
n—oo

Convergence for infinite series is defined similarly:

n

IEE

k=1

o0
ka =z <>
k=1

—0 as n — oo

A sequence 1, T2, ... is called a Cauchy sequence or a fundamental sequence
if it satisfies the Cauchy convergence criterion: For every e > 0, there exists an
No(e) such that ||zn — Zp|| < € for n,m > Ny(e); or more briefly,

lim ||lzn —zZm| =0.
n,m—oo

It is well known that every Cauchy sequence of real or complex numbers has a
limit (that is the essence of the Cauchy convergence criterion). However, the
same is not true for all normed spaces; instead, it is a special property, called
the completeness property, of certain linear spaces.

A normed linear space L is called complete if every Cauchy sequence of
elements of L has a limit in L (in the sense of convergence in the norm).
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V. Banach Spaces. A Banach space is a complete normed linear space,
that is, a set with the properties given in sections I, II, and IV.

Examples II1.(a),(c) are real Banach spaces, and III.(b),(d) are complex
Banach spaces. In the first two examples the completeness follows immediately
from the completeness of the spaces R and C. In the third example, we rely on
the following important observation:

Convergence in the mazimum norm is equivalent to uniform convergence.

Indeed, if (f») is a Cauchy sequence, then the statement || fn — fml|lo < € for
m,n > ng is precisely the Cauchy criterion for uniform convergence:

|fa(@) — fm(z)| <€ for m,n>mng and all z € K. (%)

The completeness then follows from the well-known theorem that the limit of

a uniformly convergent sequence of continuous functions is again continuous.

Therefore, there exists a function f € C(K) such that lim fn(z) = f(z) uni-
n—oo

formly in K. If z and n in (*) are fixed and m — oo, then it follows that
|[fa(z) — f(z)| <€ for n>ng and z € K;

i.e, ||fn — fllo £ € for n > ng. Thus fn, — f in the sense of convergence in the
norm, and hence C(K) is complete.

This argument is also valid for the weighted maximum norm || f||; in IIL(c).
There we assumed that 0 < a < p(z) < B in K, so that

al fllo < Ifllx < Bllfllo-

It follows that these two norms are equivalent:

Equivalence of Norms. Two norms | - || and || - ||’ on a vector space L
are said to be eguivalent if ||z|| < a||z|’ and ||z||’ < B||z|| for all z € L (e, 8
constant), which means-that convergence in one norm implies and is implied
by convergence in the other norm. The two norms || f|lo and | f||; from IIL(c)
are equivalent. It will be shown in 10.III that all norms in R™ are equivalent.
Equivalence of norms is discussed in more detail in D.IL

Completeness of the space in Example (d) is obtained in a similar manner;
here, however, one needs the theorem that the limit of a uniformly convergent
sequence of holomorphic functions is holomorphic; cf. C.VI.

VI. Operators and Functionals. Continuity and Lipschitz Con-
dition. Let E, F be two real or complex normed spaces and T : D — F a
function with D C E. It is customary to refer to such mappings as operators
or, in the case where F =R or F = C, as functionals. An operator T: D — F
is called linear if D is a linear subspace of E and T(Az + py) = AT(z) + puT(y)
holds for z,y € D and A, & € R or C, respectively. The value of T at z is usually
written Tz instead of T'(z).

An operator T : D — F is said to be continuous at a point o € D ifz,, € D,
Zn — T implies that Tz, — Tzo. The equivalent §, e-formulation reads: For
every € > 0, there exists § > 0 such that from z € D, ||z — zo| < 6, it follows
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that | Tz — Tzo|| < €. An operator T satisfies a Lipschitz condition in D (with
Lipschitz constant q) if

|ITz - Tyll < qllz —y| for z,yeD. (3)

It is easy to check that such an operator is continuous in D.

Note that the norms of two spaces, E and F', appear in this inequality. We
make no distinction between these two norms in the notation because E = F' in
most applications.

Remark. If T satisfies a Lipschitz condition, there is always a smallest Lip-
schitz constant. Let go be the infimum of all numbers g for which (3) holds (for
all z,y € D); then for fixed z and y the inequality (3) clearly also holds with go
in place of q.

The Operator Norm. If T is linear, then (3) follows from
|Tz|| < q||zf| for z € D, 3"

and conversely (take y = 0 in (3) for the latter case). The smallest Lipschitz
constant in this case is called the operator norm of T and is denoted by ||T7||. It
is given by ||T|| = sup{||Tz| : ||z|| £ 1}; cf. D.IIL

VIL. Some Examples. (a) In the special case E = F = R, every linear
operator T is of the form Tz = cz with ¢ € R, and ||T|| =c.
(b) Let D=E =C(J), J =[a,}], F =R, and

b
Tf=/ f(t)dt.

Clearly, T is a linear functional. It satisfies a Lipschitz condition (3) with
g = b — a if the maximum norm is used in E and the absolute value in F = R.
This is the smallest Lipschitz constant, i.e., |T|| = b—a.

(c) Let D = E =F = C(J) with J = [a,b], and

(Tf)(@) = / " 1) dt.

The operator T is linear and satisfies a Lipschitz condition (3) with g =b—a
(maximum norm). Furthermore, if the weighted maximum norm with p(z) =
e~% is used (cf. IIL(c)), then ¢ = 1 — e~ (®~2) (Exercise!).

(d) We consider the functional Tz = ||z|| from E to R (= F). From inequality
(2) it follows immediately that a Lipschitz condition is satisfied with ¢ = 1: The
norm in E is a continuous functional; it satisfies a Lipschitz condition with
Lipschitz constant 1.
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VIII. Iteration in Banach Spaces. Contractive Mappings. Many
existence problems in analysis — and this also includes, as we will see, existence
problems for ordinary differential equations — can be written as an equation of
the form

z=Tz (4)

in a suitably chosen Banach space B. Here T is an operator D — B with
D C B. A solution of (4) is called a fized point of T'; it is a point which remains
“fixed” under the map T

Fixed points are frequently found using an iteration procedure called the
method of successive approzimation: starting from an element z¢o € D, one
forms successively the elements

1 =Txo, 23 =Tz1, ..., Tny1 =Tzy,.... (5)

The central question of whether the sequence (z,) converges to a solution of
equation (4), is intimately connected to the concept of a contractive mapping.
The mapping T : D — B is called contracting or a contraction if it satisfies a
Lipschitz condition (3) with a Lipschitz constant ¢ < 1. In this case, (3) says
that the distance between the image points Tz, T’y under the mapping is smaller
by a factor ¢ than the distance between the two original points z, y, and hence
T “contracts” distances between points.
The following result is fundamental for later existence proofs.

IX. Fixed Point Theorem for Contractive Mappings (The Con-
traction Principle). Let D be a nonempty, closed set in a Banach space B.
Let the operator T : D — B map D into itself, T(D) C D, and be a contraction,
i.e., satisfy a Lipschitz condition (3) with constant ¢ < 1. Then equation (4)
has ezactly one solution z =1 in D.

If a sequence (z,) of “successive approzimations” is formed according to (5),
beginning with an arbitrary element g € D, then the sequence converges (in the
norm) to Z, and we have the estimate

q'n.
— <
—llzni - ol <

Iz — 2 < 1 1 — zolL )

Proof. First we note that z, € D implies Tn4y € D because T(D) C D;
thus the sequence (z,) can be constructed as indicated in (5) and is contained
in D.

We will first establish the estimate

[nts — zall < g*llzs — ol (n=0,1,2,...). (7)
This inequality is clearly true for n = 0 and can be easily proved by induction.
Assume that (7) is true for index n. Then from (3) it follows that

|Znt2 = Tntill = | TZnta — T2n| < ql|Tntr — zal|

< ¢z - 2ol
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Thus (7) holds for the index n + 1 and hence, by induction, for all n.
Applying (1) to the identity £ — y = (z — Tz) + (Tz — Ty) + (Ty — y), one
obtains

lz -yl < llz - Tz| + |Tz - Tyl + ITy —yl| for =z,y€D.

The right-hand side of this inequality becomes larger if the term ||Tz — Ty|| is
replaced by gllz — y|| (cf. (3)). Moving this expression to the left-hand side and
dividing both sides by 1 — ¢ gives the inequality

1
l-¢g

llz -yl < {llz—Tz|| +lly - Tyl} for =z,y€ D. (8)

All of the assertions follow very quickly from (8). The quantity z — T’z is called
the defect of z relative to equation (4), and correspondingly, the inequality (8)
is called a defect inequality.

If z and y are fixed points of T', then (8) implies that ||z — y|| = 0 and hence
the uniqueness of the fixed point. Setting z = Zn4, in (8) with p > 0 and
Y = Zn, then using (7) and Tz = Tp4p+1, TY = Zn41, One obtains

lZn+p — zal < {Izn+p+1 = Zntpll + |Znt1 — zall}

15
< ﬁ(q"“’ +¢")llz1 — zol| < Cq™,
where C = 2||z; — 2o||/(1 — ¢). This implies that (z,) is a Cauchy sequence,
which then has a limit Z because of the completeness of B. Since D is closed,
Z is in D. On the one hand, we have Tz, — T'Z from the continuity of T, and
on the other hand, T'z, = 2,43 — Z. Thus Z is a fixed point of T". The first
inequality in (6) is obtained from (8) when = = z,,, y = T are substituted, and
the second inequality then follows from (7). This completes the proof of this
important theorem. -

X. Remarks. (a) The method of successive approximation is easy to
illustrate graphically in the special case B = R. Suppose T'(z) is a real function
of a real variable z defined in an interval D = [a,b]. The assumption T'(D) C D
means that a < T(z) < b. The Lipschitz condition (3) is an estimate on the
size of the difference quotients

‘ T(z) - T(y) ‘
(]

pov <g¢g<1l forz,ye D, z#y.

If T € CY(D), it is equivalent to |T"(z)| < g in D.
A solution Z of the equation
z =T(z)

corresponds geometrically to the intersection of the line y = z with the curve
y = T(z). The construction (5) can be carried out graphically: See the figure,
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Y
A y=2
I
|
|
I
]
] L 1IN
) T
| o 1 y=T()
I N R
: : : : : : - The method of successive approximation
T1 T3Ts ¥ Ta T2 inthecase T: R — R

in which —1 < T'(z) < 0. The reader should make sketches for each of the
other three cases 0 < T'(z) < 1, T'(z) > 1, T'(z) < —1, and verify that in the
first of these cases the method of successive approximations converges but that
it does not converge in the other two cases.

(b) The preceding fixed point theorem goes back to Banach (1922) and is
also called the Banach fized point theorem. Stefan Banach (1892-1945, Polish
mathematician) is one of the founders of functional analysis. In the work cited
(his dissertation) he introduced the central concept of a normed space and laid
the foundations of the corresponding theory.

XI. Exercises. (a)Let M C R" be an arbitrary set and p(z) a positive,
continuous function on M. Show that the subset C(M;p) of all functions f €
C(M) for which the norm

17l = sup{|f (=)lp(z) : = € M}

is finite, forms a real (or complex) Banach space.

Hint: A Cauchy sequence in this norm is locally uniformly convergent, i.e.,
for z € M there exists a neighborhood U(z) such that the sequence converges
uniformly in U(z) N M. Don't forget to check that C(M;p) is a linear space.

This result is false if p has zeros; see (b).

(b) Let L be -the space of continuous functions f(z) on 0 < z < 1 and
| Il = max|z?f(z)|. Show that this defines a norm, but that the space L is not
complete.

Hint: Consider the sequence f, with f,(z) = é for ;1; <z <1, falz)=n
for0<z < l

n

(c) Let C(M;p) be the Banach space from (a) and ¢, i) two real-valued
functions defined in M with ¢(z) < ¥(z) in M. Show that the set of all
f € C(M;p) with ¢(z) < f(z) < ¢¥(x) for £ € M is closed.



62 II. Theory of First Order Differential Equations

XII. Exercises. (a) Let J = [0,a]. We define three norms in C(J), the
maximum norm || f|lo and

171l = max|f(z)e™*, |[Ifll2= m;le(m)le"”ﬁ-

Determine the corresponding operator norms ||T|o, |T||1, ||T||2 for the operator
THE) = [ e
(b) Show that the integral equation
y(z) = %22 +/: ty(t)dt, z € J = [0, d],

has exactly one solution and determine it (i) by rewriting the equation as an
initial value problem and solving it, and (ii) by using the results from (a) and
explicitly calculating the successive approximations (5), beginning with yo = 0.

(c) In C}(J), J = [a,b], let || f|lo be the maximum norm and |||, := || fllo +
|| f'llo- Show that this space is a Banach space with the norm || - ||;, but not
with the norm || - |lo.

§ 6. An Existence and Uniqueness Theorem

All of the functions in this section are assumed to be real valued. We consider
the following initial value problem

Y =f(z,y) for €<z<E+a, y()=n (1)

The main assumptions in the following theorem are that f is continuous in the
strip S = J xR with J = [£, £+ a] and satisfies a Lipschitz condition with respect
toy in S:

1f(z,y) — f(z,9)| < Lly — . (2)

No restrictions are placed on the value of the Lipschitz constant L > 0.

I. Existence and Uniqueness Theorem. Let f € C(S) satisfy the
Lipschitz condition (2). Then the initial value problem (1) has ezactly one so-
lution y(z). The solution ezists in the interval J: £ <z < € +a.

The proof is essentially an application of the fixed point theorem 5.IX. As a
preliminary step, the initial value problem is transformed into an equivalent fixed
point equation y = T'y. Let y(z) be differentiable on the interval J and satisfy
the initial value problem (1). Because of the continuity of f, u(z) := f(z, y(z))
is continuous in J, so y(z) is actually continuously differentiable. Therefore, by
the fundamental theorem of calculus

y(@)=n+ /E " (e y(e) dt. 3)
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4
]

3 ‘ E+a

Conversely, if y(z) is a solution of (3) that is merely continuous in J, then
the right-hand side of (3) is continuously differentiable; hence so is y(z), and
y' = f(z,y) holds. Furthermore, y satisfies the initial condition y(§) = 7.
Therefore, the initial value problem (1) is equivalent to the integral equation

(3), which can be written in the form of an operator equation
y=Ty with (@) =n+ [ ey (3)
13

The integral operator T' maps each function y from the Banach space C(J) of
continuous functions (cf. Example 5.II1.(c)) to a function T'y in the same space.

It follows that the solutions to the initial value problem (1) are precisely the
fixed points of the operator T, considered as a mapping B — B with B = C(J).
To complete the proof of Theorem I, we show that the operator T satisfies a
Lipschitz condition (5.3) with a Lipschitz constant ¢ < 1, and we then apply
the fixed point theorem 5.IX.

If the space C(J) is normed with the maximum norm ||y}l = max {|y(z)) :
z € J}, then (2) implies that for z,y € C(J),

(Ty)(z) - (T2)(z)| = /E U6 y(®) — £t 2(2)} dt

= (4)
< /E Liy(t) - ()l dt < lly — 2lo(z ~ €),
and hence, because z — £ < a,
Ty — Tz|lo < Lally — zllo.

Hence T satisfies a Lipschitz condition with Lipschitz constant La. Note, how-
ever, that this Lipschitz constant is less than 1 only if the interval is small, since

1 1
La < 1 implies that a < T One way to handle the case where a > I is to find

a 1
an n such that b= -~ < — and then use the above procedure to determine the
solution successively on the intervals

E<T<E+bE+bST<E+,.. . E+(n-p<c<E+nb=E+a.
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To do this one needs the result in VL.(b).
A more elegant way is to work with a weighted maximum norm:

lyll = max {|y(z)|e™** : z € T} (a>0). (5)

The last integral in (4) is now estimated as follows:
T T eax
L[ o) - sl teat <Ly~ 2| | e=tar < Lly - =
£ £
Then we conclude from (4) that

_ L
[(Ty)(z) — (T2)(z)|e™* < Sy ==l
and hence
' L
Iy = T2 < 2y - 2I.

Thus if one chooses & = 2L, for example, then T satisfies a Lipschitz condition
with Lipschitz constant % This variant of the proof gives existence for the whole
interval (of arbitrary length) in a single step. B

II. Comments. (a) The theorem shows that starting with an arbitrary
function yo(z) € C(J) and calculating the sequence of “successive approxima-
tions” given by

yeer(2) =7+ /E @) d (5=0,1,2,...), (6)

one obtains a sequence that converges in the norm, and hence uniformly in J, to
the solution y(z) of the initial value problem. This iteration procedure can also
be used to determine a numerical approximation to the solution. In numerical
approximations, it is a good idea to start with a function yo(z) that is as close
as possible to the solution. However, if nothing is known about the solution,
then yo(z) = 71 is not a bad choice.

(b) The following is a sufficient condition for the Lipschitz condition (2) to
hold: f is differentiable with respect to y, and | fy(z,y)| < L (the proof uses the
mean value theorem).

(c) Ezistence and Uniqueness Theorem to the Left of the Initial Value. Let
J- =] —a,€ (a > 0). If fis continuous in the strip S— := J_ x R and the
Lipschitz condition (2) holds in S_, then the initial value problem

¥y =f(z,y) for £€-a<z<E y(€)=n (1-)

has exactly one solution in J_.

This result can be proved by

(d) Reflection about the Line z = £. We introduce the functions § := y(2€ —
), f(z,y) :== —f(2€ — z,y) to transform the problem (1.) in J- into the initial
value problem in J

7 =f(z,§) for €<z<E+a, F(E)=n (14+)
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Clearly, f satisfies the hypotheses of Theorem I. In addition, one can see at
once that ¢(z) — ¢ = ¢(2¢ — z) defines a bijective mapping of C(J_) onto
C(J) that maps solutions of (1_) into solutions of (1) (and conversely). The
conclusion then follows from Theorem 1.

(e) We note that an alternative approach is to carry the original proof directly
over to the present case. Existence to the left and to the right can both be proved
using the norm

llyll = max |y(z)]e~=¢
(equation (3) holds in both cases).

Frequently, f is not defined in the whole strip, but only in a neighborhood
of the point (&,7). The following result deals with this situation.

III. Theorem. Let R be the rectangle{ <z < {+a, ly—n| < b (a,b>0)
and let f € C(R) satisfy a Lipschitz condition (2) in R. Then there ezists ezactly
one solution to the initial value problem (1). The solution ezists (at least) in an
interval § <z < €+ o, where

. b .
a=mm(a,z>, with A—mgx |f]-

A corresponding statement holds for § — a < z < €, with the rectangle R lying
to the left of the point (&, 7).

For the proof, we extend f continuously to the strip £ < 7 < £ + aq,
—00 < y < 00; for example, by setting

flz,m=b) for y<n-b,
f@y)=¢ flz,y) W R,
flz,m+b) for y>n+b.

The function f is clearly continuous in the strip and satisfies the same Lipschitz
condition (2) as f with the same Lipschitz constant. By Theorem I, there exists
exactly one solution y(z) of the initial value problem with right-hand side f.
As long as this solution remains in R, it is also a solution of the original initial
value problem. Since |f| < A, we have |y’| < A4; i.e., the solution remains in the
angular region formed by the two lines through the point (£,7) with slopes -4
(see the figure). Hence the solution does not leave R aslong as § <z < £ + o,
where o is the smaller of the two numbers a and b/A. |

Remark. We sketch another proof that does not require a continuous exten-
sion of f outside of R. Let J' = [£,£ + ). One considers the Banach space
B = C(J’) and the operator T as defined in (3') on the subset D of all ¢ € B
with |¢(z) — 77| < b. In order to apply the fixed point theorem 5.IX, one has to
show that D is closed, T(D) C D, and T is a contraction (proof as in Theorem
I). The details of this proof are recommended as an exercise.
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Yy
A !
7+ b=

3 4é+a £+a

> T

IV. Local Lipschitz Condition. Definition. The function f(z,y) is
said to satisfy a local Lipschitz condition with respect to y in D C R? if for every
(zo,y0) € D there exists a neighborhood U = U(z¢,yo) and an L = L(zo, yo)
such that in U N D the function f satisfies the Lipschitz condition

|f(z,y) — f(z,9)| < Lly — 3. , (2)

Criterion. If D is open and if f € C(D) has a continuous derivative f, in
D, then f satisfies a local Lipschitz condition in this set.

__ Suppose, namely, that U is a circular neighborhood of (zo,%) € D with
U C D; then f, is bounded in U, say |fy| < L, and for (z,y), (z,7) € U, the
relation

f(z,9) = f(z,9) =@y -9fy(z,y") with y" € (¥,7)
follows from the mean value theorem. Hence, (2) holds. B

A local Lipschitz condition is a weak requirement compared to the global
Lipschitz condition in Theorem I. For instance, f(z,y) = y? satisfies

1f(z,9) = f(z, 9] = v* - 7| = ly + glly — 3.
Therefore, f satisfies a local Lipschitz condition in R? (or in the strip J x R)
but does not satisfy a Lipschitz condition in this set.

Theorem on Local Solvability. If D is open and f € C(D) satisfies a lo-
cal Lipschitz condition in D, then the initial value problem (1) is locally uniquely
solvable for (€,7m) € D; i.e., there is a neighborhood I of £ such that ezactly one
solution exists in I.

This follows immediately from Theorem III. A rectangle like the one that
appears in III is constructed to the right of the point (€,7). If the rectangle
is chosen small enough, then a Lipschitz condition holds in this rectangle and
Theorem III applies. A corresponding argument holds to the left. |

Our next objective is to derive some global statements on the unique exten-
sion of these local solutions. We begin with a lemma that looks awkward at
first sight. It will later be used in different situations in connection with global
existence.
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V. Lemma. Let f be defined in D and let ® = {¢po}aca (A # 0) be a
set of functions, where ¢o is a solution to the initial value problem (1) in the
interval Jo containing £. Assume that the following property (U) holds:

do(z) = ¢p(z) for z€JuNJs (a,f€A). (U)

Then there exists exactly one solution ¢ defined in the interval J := U Jo with

a€A
the property ¢ | ;.= ¢o for every a € A.

This solution can be constructed as follows: For each z € J determine an

a € A such that z € J, and then define ¢(z) = ¢o(z). If B is another index
with = € Jg, then by hypothesis ¢o(z) = ¢pg(z), i.e., ¢(z) is well-defined.

If a is an arbitrary point from J, then there exists an o € A such that

a € Jo. Thus [€,a] C J, and ¢(z) = ¢po(z) holds in [£,a]. It follows that ¢ is a

solution of (1) in J. |

If this lemma is applied to the set of all solutions to the initial value problem,
then (U) implies the uniqueness of the solution. In summary, one obtains the
following

Corollary. If the initial value problem (1) has at least one solution and if
the uniqueness statement (U) holds for every pair of solutions, then there exists
a solution of (1) which cannot be extended. All other solutions are restrictions
of this solution.

VI. Lemma on the Extension of Solutions. Let D C R? and f €
c(D).

(a) If ¢ is a solution of the differential equation y' = f(z,y) in the interval
€ < = < b such that graph ¢ remains in a compact set A C D, then ¢ can be
extended to the closed interval [€,b].

(b) If ¢ is a solution in the interval [€,b] and ¥ a solution in the interval
[b, c] with ¢(b) = 1(b), then the function

p(z) for €<z <Y,
u(z) =
P(z) for b<z<c
is a solution in the interval [€, .
Proof. (a) The function f is bounded on A, say |f| < C. This means

that [¢'| < C and therefore ¢ is uniformly continuous in [£,5). It follows that
8= lirin ¢(z) exists, and (b, B) € A. If one sets ¢(b) = B, then ¢(z), and hence
T—+b—

also f(z, ¢(z)), is continuous in [£,b]. The equation

8(z) = 9(E) + /E oL
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holds for ¢ < z < b. The limit as z — b— shows that this is also valid for z = b.
Therefore ¢ is differentiable (to the left) at b and ¢'(b) = f(b, #(b)).

(b) It is sufficient to check that u satisfies the differential equation at b.
The function u is differentiable to the left and the right at this point, and both
derivatives are equal to f(b, #(b)). |

We come now to the main theorem of this section.

VII. Existence and Uniqueness Theorem. Let f € C(D) satisfy a
local Lipschitz condition with respect to y in D, where D C R? is open. Then
for every (€,7m) € D the initial value problem

¥ = f(z,y), y€)=n (7

has a solution ¢ that cannot be extended and that to the lefi and to the right
comes arbitrarily close to the boundary of D. The solution is uniquely deter-
mined in the sense that every solution of (7) is a restriction of ¢.

Definition. The statement “¢ comes arbitrarily close to the boundary of
D 1o the right” is defined as follows: If G is the closure of graph¢ and if G is
the set of points (z,y) € G with z > £, then

(a) G4+ is not a compact subset of D.

An equivalent formulation that gives a better understanding reads as follows:
¢ exists to the right in an interval £ < < b (b = oo is allowed), and one of the
foliowing cases applies: .

(b) b = oo; the solution exists for all z > £.

(€) b < oo and lim sup [¢(z)| = co; the solution “becomes infinite.”

z—b—

(d) b < o0 and lim%nf p(z, ¢(z)) = 0, where p(z,y) denotes the distance from
z—b—

the point (z,y) to the boundary of D; the solution “comes arbitrarily close to
the boundary of D.”

Indeed, statement (a) says that G is either unbounded (case (b) or (c)) or
is bounded and contains boundary points of D (case (d)).

We have repeatedly encountered these three types of behavior. In the exam-
ple 3’ = e¥sinz of 1.VIII, (b) or (c) holds to the left and to the right, depending
on the value of y(0). For the equation y' = (2y)~! in the upper half plane y > 0,
all solutions are given by y = /z + ¢ (z > —c). Here, case (b) prevails to the
right and case (d) to the left.

Proof. Uniqueness. We prove the statement “If ¢ and 3 are two solutions
of the initial value problem and if J is a common interval of existence of both
solutions with £ € J, then ¢ =% in J.”

Let us assume on the contrary that there exist, say to the right of £, points
z € J with ¢(z) # ¥(z). Then there also exists a first point zq € J to the right
of £ where the two solutions separate. This zg is the largest number with the
property that ¢(z) = 9(z) for £ < z < z¢ (zo = £ is not excluded).
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However, we know from IV that there exists a local solution through the
point (zg, #(zo)) and that it is uniquely determined. In other words, ¢(z) =
¥(z) in a right neighborhood of z¢. This is a contradiction to our assumption
about zg. The uniqueness to the left is proved similarly.

Ezistence. By Theorem IV there exists a local solution to (7), and as we
have just proved, the uniqueness statement (U) of V holds. Thus Corollary V
guarantees the existence of a nonextendable solution ¢, and we have only to
show that it comes arbitrarily close to the boundary of D (we consider only the
case “to the right” in the direction of increasing z, z > §).

Assume that (a) is false. Then G is a compact subset of D, and ¢ exists in
a finite interval € < z < b or £ < z <b. In the first case, Lemma VI.(a) can be
applied, i.e., ¢ can be extended to [£,b]. In the second case, (b, $(b)) € D, and
there exists a local solution % that passes through this point. Applying VI.(b),
one again obtains an extension of ¢.

In either case, we have a contradiction to the assumption that ¢ cannot be
extended. This completes the proof of the theorem. [ |

VIII. Exercise. Let k(z,t,z) be continuous for 0 <t <z < a, —o0 <
z < oo and satisfy a Lipschitz condition in z,

|k($a t, Z) - k(zata 2)‘ < le - Zl’

and let g(z) be continuous for 0 < z < a. Show, by applying the fixed point
theorem 5.IX, that the Volterra integral equation”

u(z) = g(z) + /0 " k(o b, u(t)) dt

has exactly one continuous solution in 0 < z < a.

IX. Exercise. Prove: If f(z,y) satisfies a local Lipschitz condition with
respect to ¥ in the set D C R? and if A C D is compact and f bounded on A4,
then f satisfies a Lipschitz condition with respect to y in A. In particular, if
v,w € C([a,b]) and graphv, graphw C D, then there exists L > 0 such that

\f(z,v(z)) - f(z,w(@))| £ Ljv(z) —w(z)] in [ab].

X. Exercise. Prove: If f is continuous in the open set D and ¢ is a
solution of (7) in the interval {¢,b) with b < oo that comes arbitrarily close to
the boundary of D to the right, then at least one of the following two cases
applies (both can happen at the same time):

(c") ¢(z) — +o0 or —co as T — b—;

() plz, $(2)) — 0 as  — b—.

This sharpens the statement in VIIL

Hint: Show: If G, is the intersection of graph ¢ with the line £ = b, then
Gy C 0D (the boundary of D).
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XI. Exercise. Rosenblatt’s Condition. Let the function f(z,y) be
continuous in the strip S = J X R, J = [0, a] and satisfy the condition

|f(z,y) = f(z,2)| < %]y—z| for 0<z<ae and y,z€R
with ¢ < 1. Show that the initial value problem

y' =f(z,y) ind, y0)=n
has exactly one solution and that this solution can be obtained by the method of
successive approximations. The above condition was introduced by Rosenblatt

(1909).
Hint. In the Banach space B of all functions v € C(J) with finite norm

||| := sup {|u(z)|/z :|O <z <a},
the operator T',

T = [ fen+u)
satisfies the Lipschitz condition (5.3). If u is a fixed point of T, then y =u + 7
is a solution of the initial value problem.

Supplement: Singular Initial Value Problems

Here we consider a singular initial value problem for a differential equation
of second order,

V' +2y=f(zy) o o=008 y0O=n yO=0. @

This problem is closely connected to the problem of finding rotationally sym-
metric solutions of the nonlinear elliptic equation

Ay = f(rs 'u,),
where z € R” and r = |z].
XII. The Operators L, and I,. In what follows, J = [0, b], Jo = (0, 5],
a > 0, and L, is the differential operator
Lay=y" + %y' =z"%(z%).
Lemma. Let y € C(J)NC?(Jh), ¥ bounded, and f(z) € C(J). If
Loy=f(z) in Jo, y(0)=n, (9)
theny € C*(J), ¥'(0) =0, lim /(z)/z =4"(0) = f(0)/(«+1), and

y(z) =0+ (Iof)(z) with I,f= /0: 5~ /Os t* f(t) dtds. (10)

Conversely, if y is defined by (10), then y is a solution of (9) with the above
properties; in particular, y € C2(J), y'(0) = 0.
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Proof. Because y' is bounded, we have z%y'(z) — 0 as  — 0+. By inte-
grating (z®y’) = z*f, one obtains

x
2%y () = / 12 £(t) dt. (11)
. 0
The substitution t = z7, dt = zdr in (11) leads to
/ 1
LAY :(:) = / 7% f(rz) dr. (117
0

Since f(zr) — f(0) as £ — O+ uniformly in 7 € [0, 1], one derives from (11')
that y¥'(z)/z — f(0)/(e + 1) and, in particular, y’(z) — 0 as £ — 0+. By
a well-known theorem from analysis (see C.VL.(b)), y € C*(J) and y'(0) = 0.
Using equation (9) to determine 3", we get y"/(z) — f(0)/(a+ 1) as z — 0+.
A second application of the previously mentioned lemma shows that y € C?(J)
and that y"(0) has the specified value.

Solving equation (11) for ¥’ and then integrating gives (10). The integrand

8

s¢ / t*f(t)dt in I is a continuous function in J vanishing at 0. This follows

from 10;he boundedness of f together with the inequality s~*¢* < 1.

Conversely, one obtains (11) by differentiating equation (10). As we have
seen, the specified properties of y follow from (11). Finally, if equation (11) for
z*y' is differentiated, (9) follows. |

XII1. Existence and Uniqueness Theorem. Let the function f(z,y)
be continuous in J xR and satisfy a Lipschitz condition (2) iny. Then for given
a > 0, the initial value problem (8) has ezactly one solution y € C%(J).

Proof. By the previous lemma, (8) is equivalent to the Volterra integral
equation y =+ I f(-,y), which can be written in the form

vo) =0+ [ " bz, 1) f(t, y(1)) de (12)
with
k(z,t) =t /:c s~ %ds.

Since (t/s)* < 1 implies that 0 < k(z,t) < z — ¢, it follows that the “kernel”
k(z,t) is continuous in the triangle D : 0 < t < z < b. The assertion now
follows from the theorem in Exercise VIII. [ ]

XIV. Rotationally Symmetric Solutions of Elliptic Differential
Equations. In the following, z € R*, n > 2, r = |z| (Euclidean norm), and
A is the Laplace operator

Ay = Uzyzy + Uzogz, T+ + Uz pz, -
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The Laplace operator for rotationally symmetric functions u(z) = y(|z|) (they
are also called radial functions) is given by

n—1
Au=y" + —T—y' = Loy

for proof, use the formulas for u;, u;; given below. The results established here
lead at once to the following

Existence and Uniqueness Theorem. Let the function f(r,z) be con-
tinuous in J X R and Lipschitz continuous in 2. Denote by By the closed ball
By : |z| £ b. Then the differential equation

Au = f(|z|,u) in By

has ezactly one rotationally symmetric solution u € C%(By) satisfying the initial
condition u(0) = ug.

This result follows immediately from the previous theorem. The solution u
is obtained in the form u(z) = y(|z|), where y(r) is the solution of (12) with
a=n—1,n = up, and r in the place of z. One question needs clarification.
While the C%-property of y carries over at once to u as long as z # 0, the same
is not immediately obvious for £ = 0. The next lemma gives information about
this.

Lemma. The function u(z) = y(|z|) (z € R") is twice continuously differ-
entiable in the ball By : |z| < b if and only if y € C%(J) and y'(0) = 0.

Proof. Since u(t,0,...,0) = y(]t|) is an even function of t, it follows easily
that u € C%(B,) implies y € C%(J) and y'(0) = 0. For the proof of the converse
proposition, the partial derivatives of u will be denoted by u; and u;;. For z # 0,
we have

z; iz TiT; !
Because |z;/r| £ 1, ui(z) — 0 as £ — 0. Setting »;(0) := 0, one obtains
a continuous function in By for which du(0)/0z; = 0; cf. B.VI.(a) and (b).
Thus « € C!(Bp). One proceeds in exactly the same manner with the second
derivatives. From y'(r)/r = (y'(r)—'(0))/r — y"(0) it follows that y" —y'/r —
0 as 7 — 0+, thus u;;(z) — 6;;4"(0) as £ — 0. Taking this value to define
4;(0) and using Theorem VI from Appendix B again, we see that this defines
a continuous function in By and that du;/0z; = u;; at z = 0. This completes
the proof of this lemma and also the proof of the previous theorem. |

Radial solutions of elliptic equations have been studied extensively. Such
solutions are important in differential geometry and in many areas of applied
mathematics. The question of the existence of entire radial solutions (i.e., those
that exist in R™) has been completely solved in the case of the equation Au +
uP = 0. The first comprehensive results for more general equations of the form
Au+ K(r)uP = 0 were given by Ni (1982).
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XV. Exercise. Comparison Theorem. Assume that v,w € C?(J)
satisfy

Lyv < f(z,v), Lqw2> f(z,w) in Jo=1(0,b],
v»(0) < w(0), v'(0)=u'(0)=0,

where f(z,y) is increasing iny. Thenv' <w' and v < w in J.
Hint: Show that v/ < w' as long as v < w.

XVI. Exercise. Let the functions p and p; be continuous in J = [0, b]
and positive in Jy = (0,b] and let p;(t)/p(z) < Cz=" for 0 < t < z < b with
0 < v < 1. We consider the initial value problem

Ly = f(z,y) in Jo, y(0)=m, ¢(0)=0,
where
1

e

Prove: If the function f(z,y) is continuous in J x R and satisfies a Lipschitz
condition in y, then the initial value problem has exactly one solution. For a
solution we require y € C*(J) and py’ € C'(Jp).

Hint: Reduce the problem to a Volterra integral equation and use the theo-
rem from Exercise VIIIL.

Ly (p(z)y')".

§ 7. The Peano Existence Theorem

In Chapter I we dealt with instances where the right-hand side of the differ-
ential equation

¥ = f(z,9) (1)

does not satisfy a Lipschitz condition. An example is the equation §’' = \/I_—I .
The fundamentally important question whether continuity of f(z,y) is sufficient
for existence of a solution was first answered in the affirmative by the Italian
mathematician and logician Giuseppe Peano (1858-1932). Peano’s paper (1890)
is written in logical symbols and was later “translated” by G. Mie (1893) into
German.

I. The Peano Existence Theorem. If f(z,y) is continuous in a do-
main D and (€,7) is any point in D, then at least one solution of the differential
equation (1) goes through (€,7m). Every solution can be extended to the right and
to the left up to the boundary of D.

The last part of the statement of this theorem means that every solution
has an extension that comes arbitrarily close to the boundary of D both to the
right and the left as explained in 6.VII

The proof of this theorem requires some additional concepts and lemmas.
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II. Equicontinuity. A set M = {f,g,...} of continuous functions on
the interval J : @ < z < b is called equicontinuous if for every € > 0 there exists
a number 6 = é(e) such that for any f € M,

|f(z) = f(&)| <e for |z—Z|<é, (z,Z€lJ). (2)

It is important to note in this definition that for a given £ > 0, the same &
works for every function in the family M.

Fzrample. Let M be a set of functions f(z) that satisfy a Lipschitz condition
with a common Lipschitz constant L; i.e.,

|f(z)— f(&)| < Llz—z| for z,2€J and fe€ M.

The set M is equicontinuous. Clearly, one can set 6(g) = ¢/L here.

III. Lemma. LetJ = [a,b] and let A C J be a dense set of points in
J. If the sequence of functions fi(z), fa(z), ... is equicontinuous in J and
converges for every £ € A, then it converges uniformly in J. Hence the limit
f(z) is continuous in J.

A point set A is said to be dense in J if every subinterval of J contains at
least one point of A (example: A = the set of all rational numbers in J).

Proof. Given € > 0, let § = 6(¢) be determined such that (2) holds for all
functions fn (n > 1). Now partition the interval J into p closed subintervals
J1,...,Jp such that each J; is less that 6 in length. For each J;, choose an
z; € J; N A (there exists at least one such point for each 7). By hypothesis,
there exists an ng = ng(e) such that

[fm(zi) — fo(z:)| <€ for mn>ng and i=1,...,p.

Now let z be an arbitrary point of J and g be such that z € J;. It follows
from the inequality |z — z4| < 6, property (2), and the above inequality that for
m,n 2 ng,

|fm(z) = fa(2)| S |fm(2) = fm(ze)| + [fm(zq) — frlzq)l
+ |falzq) — fal2)l < 3e.
This shows that the sequence fn(z) converges uniformly in J. |

As a further tool we require the

IV. Ascoli-Arzelad Theorem. FEvery bounded and equicontinuous se-
quence of functions (fn) in C(J) contains a subsequence that converges uni-
formly in J. (Boundedness means that there exists a constant M such that
[fa(z)| £ M foralln>1andz e J.)
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Proof. Let A = {z1,z2,...} be a countable dense point set in J (for instance,
the set of all rational numbers in J). The sequence of numbers a, = fp(z1)
(n=1,2,...) is bounded and hence contains a convergent subsequence, say

fPl(zl)) fpz(zl)) fpa(zl), N

The sequence of numbers b, = fp, (z2) is likewise bounded and has, accordingly,
a convergent subsequence, say

fql (z2)7fqg(z2), fqg(z2), e

Note that (gn) is a subsequence of (p,). The sequence ¢, = f,, (z3) is again a
bounded sequence and therefore has a convergent subsequence

fry (:1:3), sz(z3)) fr3($3), ceen

By continuing this process one obtains a series of sequences of the form

fo11 o2y foar foar-- -, which converges for z =z,
far» fa2r faar faar---, which converges for z =z, z,,
frys Fros fras frar .., which converges for z = z,,z», z3,

For each k > 1 the sequence that appears in the kth line is a subsequence of
the sequence in the previous, (k — 1)st, line and converges for z = z,...,zk.
It follows that the diagonal sequence

converges for every z = zy; i.e., for all z € A, because it is a subsequence of the
sequence in the kth line, at least from the kth term onward (k = 1,2,...). The
uniform convergence of this diagonal sequence now follows from Lemma III. B

‘We first give a proof of a weaker version of the Peano existence theorem.

V. Theorem. Let the function f(z,y) be continuous and bounded in the
strip S = J xR with J = [£,£+a), a > 0. Then there ezists at least one function
y(z) defined and differentiable in J for which

¥y =f(z,y) -in J,  yl) =1 3)

(and, as a consequence, y(z) is continuously differentiable in J).

Proof. The theorem is proved by finding a function y(z) € C(J) that satisfies
the integral equation

y(z) =+ /‘E ey d o g @
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z The approximate solutions zq(z)
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see 6.I. With this objective in mind we construct, for every a > 0, an “approx-
imate solution” z,(z) € C(J) using the formula

] for z<¢,

(5)

2q(z) = z
77+/ flt, za(t —a)dt for zeJ
13

This formula defines z, unambiguously for £ < £ +a. Indeed, f £ <z < €+ q,
then t — o < € and 2,(t — &) = 7 in the integrand; i.e., the integral is well-
defined. fé+a << €+2a,thent—a < z—a < €+ a Therefore,
2o (t — @) is determined from the previous step; i.e., the integral is well-defined
and so on. After a finite number of such steps we have constructed a continuous
function z,(z) that satisfies the integral equation (5). It follows from |f| < C
that |2 ()| < C; i.e., the functions z,(z) satisfy the Lipschitz condition

|2a(2) = 2(Z)| < Clz - 2|

in J. If we denote the set of functions 2, in C(J) (we consider only their restric-
tions to J) by M, then M is equicontinuous. Therefore, by the Ascoli-Arzela
theorem IV, the sequence 21 (z), 21/2(z), z1/3(z), - . - has a uniformly convergent
subsequence (zq,(z)) (n = 1,2,3,...;0, — 0), which we relabel as (2,(z)) to
simplify the notation. Denote the continuous limit of this sequence by y(z).
Then by (5),

2n(z) = + / (&, 2t — an)) dt. (6)
13
It follows now from the inequality
Izn(t - an) - y(t)l < |zn(t - an) - z‘n(t)[ + lz‘n(t) - y(t)l
< Con + |2za(t) — y(t)|

that z,(t — ) converges uniformiy in J to y(t) and hence that f(t, 2,(t — a,))
converges uniformly in J to f(¢,y(t)) (here we have used the fact that f(z,y) is
uniformly continuous on bounded sets). Therefore, passage to the limit under
the integral sign in equation (6) is allowed, and equation (4) follows as a result.

B
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This special case of the Peano theorem can now be used in a manner that
parallels the role of Theorem 6.1 in the development of the Lipschitz case. But
in other respects, the proof of theorem I differs essentially from that in the
corresponding theorem 6.VIIL.

One first proves, exactly as in §6, that the existence theorem holds for a strip
to the left of £ and also for a rectangle. We formulate the latter case, which
corresponds to Theorem 6.1I1.

VI. Theorem. If f is continuous in the rectangle R : £ < z < € +a,
|y — | < b, then the initial value problem y' = f(z,y), y(§) =1 has o solution
y(z) ezisting (at least) in the interval § < z < € + «, where & = min(a,b/A),
A =maxg|f|. A corresponding result holds for a rectangle to the left of €.

This establishes the first part of the Peano existence theorem, that an
integral curve passes through every point of D.

The second part, the proof of the assertion that every solution can be ex-
tended to the boundary, is more difficult in this setting in comparison to the
proof in §6. The difficulties come from the fact that we do not have a uniqueness
statement at our disposal.

Only the extendibility to the right will be discussed.

We first prove the following intermediate result.

(Z) If ¢ is a solution in the interval £ < < b and A is a compact subset
of D, then ¢ can be extended beyond A, i.e., there exists an extension ¢ to the
right with graph ¢ ¢ A.

The distance from the set A to the boundary of D is positive, say 3p > 0 (if
D =R?, one can take p = 1). If Ay, is the set of points whose distance from A is
< 2p, then Ay, is likewise a compact subset of D, and hence f is bounded in As,,
say |f| < C. Denote by R(zo, o) the rectangle 7o < z < zo + p, |y — %o} < p.
Then R(zg,yo) C A, for any (zo,y0) € A.

If graph ¢ C A, we begin by extending ¢ to [£,}] in the manner described
in 6.VI.(a). Then we continue ¢ further to the right, by applying Theorem VI
in the rectangle R(b, #(b)). This results in a solutioninb <z <b+a =: b
with @ := min(p, p/C). If this extension still lies entirely in A, then the process
is repeated with R(b1,®#(b1)), etc. Since at each step the interval of existence
increases by a fixed number & > 0 (as long as graph ¢ C A), one obtains in this
manner a solution that extends beyond A after a finite number of steps. This
proves (Z). [ ]

The remainder of the proof is straightforward. We consider a sequence (A4,)
of compact sets with A, C Ap41 C D for all n and such that every compact
B c D is contained in one of the A, (for example, let A, be the set of points

1
from D with distance > - from the boundary of D and distance < n from the
origin). Let ¢ with ¢(£) = 7 be a solution in an interval to the right of £ that
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does not approach the boundary of D. Then graph ¢ is a compact subset of D;
i.e., graph ¢ C A, for a suitable p.

We continue ¢ beyond A, using (Z) and call the extension ¢,; it exists in
an interval J, = [€, by]. We now construct ¢p+1: If ¢, does not belong entirely
to Apt1, then we set ¢pi1 = ¢p; if ¢, does lie in Ap11, then we continue the
function ¢, to the right until it leaves Ap41 and call the continuation ¢pi1. It
exists in an interval [§, bp+1] with bpiq -> bp. Continuing inductively in this
manner, one obtains a sequence of functions (¢,) such that ¢, is defined in
[€,b,] and (br) is a monotone increasing sequence of numbers. If p < n < m,
then ¢, = ¢, in Jj,.

Thus, by Lemma 6.V, there exists exactly one solution y defined in [£,b),
where b = lim,_,o by (b = 00 allowed), with the property that y |7,= ¢, for
every n > p. This function y is the extension to the right of the original solution
¢ mentioned in the conclusion of the theorem. Clearly, graph v is not contained
entirely in any A, and hence is not contained in any compact subset of D. R

Remark on constructive proofs. The proof of Theorem V is different from
that of 6.1 in one important respect. In 6.I it was possible to calculate explicitly
a sequence of successive approximations that converges to the solution (this is
the essence of the contraction principle). Here, on the other hand, the initial
value problem has several solutions in general, and it cannot be expected that
a sequence of approximations like the one we constructed even has a limit, let
alone tends toward any particular one of these solutions. Now one applies the
Ascoli-Arzela theorem to a sequence of such approximations. It says that there
ezists at least one convergent subsequence. However, no procedure is given that
would allow the particular subsequence to be identified. An existence proof like
the earlier one in §6 is called a constructive proof. By contrast, the proof of the
Peano existence theorem given in this section is nonconstructive.

In the proof of the Peano existence theorem that we have just given the
approximate solutions z, were computed from the integral relation (5). Another
frequently used method of obtaining approximations is

VII. The Euler—-Cauchy Polygon Method. In this method, polygo-
nal approximations u, (o > 0) to the solution to the initial value problem (3)
are constructed in the following manner. Let z; = £+ a1 (= 0,1,2,...). For
£ =1z9 <z <z we set ug(z) = 1+ (z — 20)f(£,7); i-e., uy is the straight
line through the point (£,7) = (zo,yo) with slope f(zo,y0). In the interval
z; < z < I3, U, is the straight line through the point (z1,%1) = (21, 2a(Z1))
with slope f(z1,%1). In general, one arrives after p steps at a point (zp,yp)
with ¥, = ua(p) and defines then for z, < = < zp41 that u, is the straight
line through (zp,y,) with slope f(zp,yp). The advantage to this construction
is two-fold. It is based on a relatively simple idea that is easily carried out
numerically. However, the final step in the proof (passing to the limit to get the
solution) is more difficult.
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Y2
n

> T
T1 =z I3 \]m
Y4

€ =10 The Cauchy polygon method

VIII. Exercise. Prove that the Volterra integral equation

y(z) = 9(z) + /0 " b (1)) dt

has at least one continuous solution in J = [0, a], provided that the function
g{z) is continuous in J and the “kernel” k(z,t, 2) is continuous for 0 < ¢t < z <
a, —00 < z < 0o and safisfies a growth condition |k(z, t,2)| < L(1 + |2|).

Hint: Let C = max |g(z)| and D = {v € C(J) : |v(z)| £ p(z) in J}, where
p is determined by p' = L(1+p), p(0) = C. If the integral equation is written in
the form u = Tu, then T(D) C D. Now apply the Schauder fixed point theorem
7.X11.

Application to an Elliptic Problem. Show that if f is continuous in
J x R and satisfies |f(z,y)| < L(1 + |y|), then the initial value problem (6.8),

Loy = f(z,y) in J, y(0)=n, 3'(0)=0,

where L, is the operator defined in 6.XII and « > 0, has at least one solution.

As in 6.XIV, this result leads to an existence theorem for rotationally sym-
metric solutions of the elliptic differential equation Au = f(|z|,u). In particular,
if f is continuous in [0, 00) X R and satisfies an estimate |f(r,y)| < L{r)(1+|y)),
where L(r) is a continuous function in [0, 00), then there exists an entire, rota-
tionally symmetric solution for every initial value 7.

IX. Divergence of the Successive Approximations. If the right-
hand side f(z,y) is not Lipschitz continuous in y, then, as a general rule, the
sequence of functions generated by the method of successive approximation does
not converge to a solution. The example

¥y =20-2yyy, y(0)=0 with y; =max{y,0}

shows that this behavior can also occur even if the solution is uniquely deter-
mined.
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Indeed, beginning with yo = 0 one obtains y; = 22, y2 = 0, ..., and in
general, Yo, = 0, Yon+1 = 2. Nevertheless, since f is monotone decreasing in y,
the uniqueness of the solution to the right follows from the uniqueness theorem
9.X.

Exercise. (a) If yo = az? (a > 0) is chosen as a starting value in the
method of successive approximations for the above equation, then one obtains
y1 = ¢(a)z?, hence y, = a,z%, where o, is defined inductively by oo = a,
ant1 = ¢(an) (n =0,1,2,...). Determine ¢ and show that ¢ has exactly one
fixed point & (& = ¢(&)), and compute the fixed point. This gives a solution y =
az? to the problem. A more difficult problem is to show that the convergence
is alternating for 0 < ap < &: 0<ap <ag<---<a@<---<ag<a; <1and
that lim o, = &.

(b) Analyze the above problem “to the left”in a similar manner, i.e., consider
for 2(z) := y(—z) the problem

2=2c+4+2/zFy for £>0,2(0)=0

and show that starting with zp = Boz® and using the method of successive
approximations, one obtains 2z, = B,z%, where fnt1 = Y(Bn), IimfB, = B
(independent of By € R), and that z = Sz? is the unique solution.

Hint: Show that the condition of Rosenblatt in 6.XI is satisfied (one can as-
sume that z > 222). The uniqueness and convergence of the iteration procedure
for every starting value zp(z) can then be obtained from the theorem in 6.XI.

Supplement: Methods of Functional Analysis

We briefly develop some concepts and theorems from functional analysis in
order to deepen our understanding of the Peano existence theorem and its proof.
Fundamental to this effort is the concept of

X. Compactness. A subset A of a normed linear space B is called com-
pact if every sequence (z,) in A has a convergent subsequence with limit in A.
The set A C B is called relatively compact if A is compact.

In R" a set is compact if and only if it is closed and bounded. In the general
case, a compact set is always closed and bounded, but the converse is not always
true.

An operator T : D — B with D C B is called a compact operator in D if
T(D) is relatively compact.

If T is a compact operator and if it is possible to find approximating so-
lutions, then the equation £ = T'z has a solution. This goes as follows. An
equation z = T'z is called approzimately solvable if for every € > 0, there exists
z € D with ||z — Tz|| <e.

Fixed Point Theorem. Let the operator T : D — B be continuous and
compact in D, where D is a closed subset of the normed space B. If the equation

r=Tx
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is approzimately solvable in D, then there exists a solution in D.

The proof is elementary. There exists a sequence (z,) from D with z, —
Tz, — 0. The sequence (y,) = (T'z,) has a convergent subsequence, since T'(D)
is relatively compact. If we denote this subsequence again by (yr) to simplify
the notation, then y, = Tz, — y € B and hence z, = ynp + (Tn — T'zn) — ¥.
Since D is closed, it follows that y € D. Then because of the continuity of T,
Tz, — Ty, from which y = Ty follows. |

XI. Example. Let J be a compact interval and M a subset of the Ba-
nach space C(J) with the maximum norm.

If M is bounded and equicontinuous, then M is relatively compact.

This statement expresses precisely the content of the Ascoli-Arzela theorem
IV in the terminology of compact sets.

The Peano existence theorem, in the form of Theorem V, can be derived
using the fixed point theorem X. One sets D = B = C(J) and defines T to be
the integral operator

(To)(z) =n+ /: Flt, é(t))dt for ¢ € B.

The following must now be shown:

(a) T is continuous in B;

(b) T is compact in B;

(c) the equation z = T'z is approximately solvable.
The reader should carry out this proof. The approximations z,(z) (cf. (5)) can
be used to verify (c).

The proof can be made even simpler if one makes use of the following,
significantly deeper, tool from functional analysis. -

XII. The Schauder Fixed Point Theorem. Let D be a closed and
convez set in a Banach space B and let T : D — B be a continuous and
compact operator in D with T(D) C D. Then T has at least one fized point in
D.

" A set D is called convez if, whenever a,b € D, the line segment ab = {z =
Aa+ (1 —A)b:0< )< 1} also lies in D.

A proof of the Schauder fixed point theorem is given in D.XII.

In order to derive the Peano existence theorem from the Schauder fixed point
theorem, one has only to verify the two properties XI.(a), (b).

XIII. A Proof Based on Zorn’s Lemma. Theorem I was derived
from Theorem V by constructing the extensions explicitly. This result can also
be proved using a theorem from set theory, Zorn’s lemma. We introduce some
additional concepts. A set M, or more precisely the pair (M, <), is called an
ordered set if < is a transitive, antisymmetric relation in M (i.e., z < y and
y < z implies z < z; z < y and y < z implies z = y). A subset N C M is
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called totally ordered if every pair of elements of N is comparable (either z < y
ory <z for all z,y € N). An element m € M is called an upper bound of N if
z < m holds for all z € N. The element m € M is called a maximal element of
M if, except for m itself, there does not exist an z € M with m < z.

Zorn’s Lemma. If (M, <) is ordered and if every totally ordered subset of
M has an upper bound in M, then there exists a mazimal element in M.

‘We give here a brief indication of how Theorem I can be proved using this
lemma. Let M be the set consisting of the graphs of all solutions of the given
initial value problem, ordered by inclusion C. A set of solutions with the unique-
ness property (E) of 6.V is a totally ordered subset of M. It follows from Lemma
6.V that this set of solutions has an upper bound. Thus Zorn's lemma can be
applied and there exists a maximal element, i.e., a nonextendible solution. The
proof that this solution extends to the boundary in both directions now follows,
word for word, as in 6.VII.

XIV. Delay-Differential Equations. Let 7(z) be a given function in
C(J), J = [¢,€ +a], with 0 < 7(z) < b. The equation

¥(2) = flz,y(z —7(z)) for ze€J (7)

is called a delay-differential equation. It is necessary to specify the function y(z)
in the interval J_ = [£ — b,£] as the “initial value”; otherwise, the right-hand
side of (7) would not be defined for z close to £ if, e.g., 7(x) = b. Thus an initial
condition for (7) reads

y(e) =¢(z) for zel.=[-54¢], (8)

where ¢ is a given function.

The functions 2z, constructed for the proof of Theorem V are, in fact, solu-
tions of just such an initial value problem with delay arguments where ¢(z) =7
and 7(z) = a.

Theorem. We consider the initial value problem (7), (8), where f is con-
tinuous in the strip S = J x R and 7 is continuous in J with 0 < 7(z) < b.
(a) If 7(z) > 0 in J, then there ezxists ezactly one solution.
(b) If f satisfies a Lipschitz condition in S,
|f(z,y) - f(z,2)| < Lly - 2| with L20,

then there exists ezactly one solution, and it can be obtained by successive ap-
prozimation.

(c) If f is bounded in S, then there exists at least one solution.

The proof of (a) proceeds like the proof in V. Theorem (b) corresponds to
Theorem 6.1 and is proved in exactly the same way. Theorem (c) corresponds
to the Peano existence theorem V; the proof can be carried over.
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XV. Exercise. Let the initial value problem
Y(@)=y(z—a) for 2>, y@)=1 for 0<z<0q,

for a linear delay-differential equation be given, where o > 0 is a given constant.
Show that the solution can be represented in the form

y(z) = Zak|(z —ka)y|¥ with sy =max(0,s).
k=0

Determine the ay.
Show that the solution approaches the solution to the initial value problem

yl =Y y(O) =1

as o — 0 and that the convergence is uniform in bounded intervals.

XVI. An Elementary Proof of the Peano Existence Theorem.
‘We sketch a constructive proof of the Peano existence theorem that does not
use a compactness argument.

Suppose that the assumptions of Theorem V hold; in particular, let |f(z,y)| <
A. For h >0 let

fr(z,9) =max{f(z,y):Z<z<z+h, §-34Ah <y <y+ Ah}.

We apply the polygon method (cf. VII), first with step size h and the function
fr (instead of f), and then with step size h/2 and the function fj/2. Denote the
polygonal curves obtained in this manner by y(z) and z(z), respectively. Then
it follows that z < y in J. This can be proved using an induction argument
on the grid points of y. If Z is a grid point and 2(z) < y(z) for z < Z and
2(Z) < y(Z) — 2Ah, then the inequality z < y also holds up to the next grid
point Z+h. On the other hand, if y(Z)—2Ah < 2(Z) < y(Z), then fa/2(Z, 2(Z)) <
fr(Z,y(%)), and from this it follows that z < y up to the point Z + h/2, and
then, using a similar argument, up to Z + h.

If the polygon method is applied in the manner described above for A =277,
then one obtains a monotone decreasing sequence of polygonal curves y,. The
proof that the limit of these sequences is a solution of the initial value problem
is carried out in the usual way by going over to an integral equation. Note that
the solution that is obtained in this way is the maximal integral (§ 9); cf. Walter
(1971).

§ 8. Complex Differential Equations. Power
Series Expansions
In this section z, w denote complex numbers and w(z), f(z,w) complex-

valued functions of one and two complex variables, respectively. We begin with
a few definitions and facts from the theory of functions of complex variables.
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I. Properties of Holomorphic Functions. A continuous function g(z) :
G — C, where G is an open set in C, is called holomorphic (also analytic) in G if
the (complex) derivative ¢'(z) = fltin%(g(z+h) —g(z))/h exists and is continuous

in G. We denote by H(G) the complex vector space of holomorphic functions
in G. If the closed disk Z : |z — z| < a belongs to G, then every function
g € H(G) has an absolutely and uniformly convergent power series expansion

9(z) = Z an(z—2)" in Z.

n=0

Similarly, a function f(z,w) is holomorphic in an open set D C C? (written
more briefly f € H(D)) if f and the partial derivatives f, and f,, are continuous
in D. If this is the case and if the disk product Z : |2 — 2| < @, |w —wp| < b lies
in D, then f(z,w) admits an absolutely and uniformly convergent power series
representation

oo

flz,w) = Z cik(z — z0)T (w — wo)* in Z.
k=0

Thus holomorphic functions have continuous derivatives of all orders. The com-
position g(z) := f(h1(2), h2(2)) is holomorphic whenever the functions f(z,w),
hi(z), ha(z) are holomorphic (naturally, it is also assumed that the range of
(h1(2),h2(2)) is contained in the domain of f), and the chain rule applies,

9'(2) = fa(h1(2), ha(2))h1(2) + fu(ha(2), ha(2))ha(2)- (1)
Suppose h(z) € H(G) and z = ((t), t € I = [, f), is a smooth path in G.
Then the path integral along ( is given by
B
e = [ coroa. @

If G is simply connected and the path closed (i.e., {(a) = {(b)), then ¢ / h(z)dz =
0 by the Cauchy integral theorem. It follows easily that the function

mn=/3©« (20 € G) (3)

is well-defined in G, i.e., that the integral has the same value for all paths that
run in G from zy to 2. The function H is an antiderivative of h, i.e., it is
holomorphic in G, and

H'(z)=h(z) in G.
As in the real case, the fundamental theorem of calculus holds:
hz) = hao) + [ K(Qd (2,30 € G). @
Zg

However, the mean value theorem of differential calculus is valid only in the
following special form:
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If the line segment connecting zo and z lies in G and if |h'(¢)| < L on this
segment, then

|h(2) — A(20)| < L|z — 2. (5)

This result can be obtained immediately from (4) by taking the path of inte-
gration to be the straight line connecting the points zg, z and making use of a
general estimate for the path integral in (2),

C/h(z) dz

8
Here I(¢) = / |¢'(t)| dt is the length of the path, and C = ((I) is the curve

generated by the path.
These facts are assumed to be known; cf. Appendix C.

6
S/a RGN IS (B)] dt < max |R(2)] - L(Q). (6)

II. Existence and Uniqueness Theorem in C. Let the function f(z,w)
be holomorphic in a domain D C C? that contains the set

Z:|z—2z|<a, |w—w|<b

and let |f| < M in Z.
Then there is a holomorphic solution w(z) of the initial value problem

w' = f(z)w(z))) ’LU(Zo) = Wo, (7)

and this solution ezists at least in the disk K : |z — zp| < a = min(a, b/M).
Ifv and w are solutions of (7) ezisting in a domain G that contains the point
zg, thenv=w in G.

Proof. Suppose |f| £ L on the set
Zy:|z—2| <@, lw—wo| <bh.
Then f satisfies a Lipschitz condition with respect to w in Z;:
|F(z,w1) — F(zw2)] < Llwn —wal. (8)

This follows from the mean value theorem in the form (5) (with w as the in-
dependent variable and z as a parameter). Because of (4), the initial value
problem (7) is equivalent to the integral equation

w(z) =wo + / zf(c,w(C))dc. (9)

Let B be the space of functiods w(z) that are holomorphic and bounded in
the disk K with the norm

llull = sup [u(z)]e~?H==l.
K
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This space is complete and hence a Banach space; cf. Example 5.IIL.(d). Let
Dr be the set of all u € B with |u(z) — wp| < b. The operator T,

Tu = wo + / (¢ w(0)) de,

is defined for u € Dr, and the solutions to the initial value problem (7) are
precisely the fixed points of T. We are going to show:

(a) T maps Dr into itself;

(b) T satisfies a Lipschitz condition in Dr with constant 3.

To prove (a), if © € Dr, we have

[(T'(w)(2) — wo| =

[ feuena| s Mis-mlsamss. 0
20

The argument for (b) is similar to the one in 6.I. A straight line path of
integration is chosen: {(t) = 29+8-t,0 < t < |2 — 2|, where 6 is the unit vector

(z — 20)/|2z — 2o|. Then using (8), (6), and [¢'| = 1 one obtains

[(Tu)(2) — (Tv)(2)| <

[t - s dc'
|z—zol
<L / [(C)) — v(C(8)) e te2Et dt

|z2—z0]|
< Lfju— ] / e2Lt gt
0

IA

%e2L|z—zo| []u _ v”

Statement (b), || Tu—Twv|| < 3|lu—v|| for u,v € Dr, follows from this inequality.

Now, by the contraction principle 5.IX, T has exactly one fixed point w in
Dr. It is the limit w(2) = limu,(2) in the sense of uniform convergence in K
of a sequence of successive approximations (u,), which can be constructed by
first setting ug(2z) = wo (for instance) and then in succession setting

Un41 = Tuna in full, Un+1 (Z) =wp + /z f(C7 un(C)) dt. (11)

Uniqueness. (i) Let v be another solution of (7) and let o/ < o be chosen
such that [v(z) — wo| < b in the disk K’ : [z — zp| < /. From the above proof
(with K’ instead of K) it follows that v = w in K’.

(ii) Now let v, w be solutions in the domain G with v(z;) # w(z1). If zp and
2z; are connected by a smooth path z = ¢(s) (0 < s < l) that lies in G, then
there exists a maximal s’ < ! with v({(s)) = w(¢(s)) for 0 < s < s'. Since v and
w have the same “initial value” at the point 2’ = {(s'), it follows from (i) with
2’ in place of zp, that v and w agree in a neighborhood of 2’. This contradiction
to the maximality of s’ shows that v = w holds in G. Note that this result also
follows from (i) and the identity theorem for holomorphic functions. |
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III. Power Series Expansions. Like all holomorphic functions, the
uniquely determined solution w(z) of the initial value problem (7) can be ex-
panded in a power series

(>}
w(z) = Z an(z—20)" for |z—z|<ec. (12)
n=0
Determining some coeflicients of this expansion is an efficient numerical proce-
dure, at least for z close to zp. The following two methods can be used to this
end:
Method 1. Beginning with the identity w'(z) = f(z,w(z)), the higher order
derivatives can be calculated, one after another, by differentiation:

"=
"=zt w fu,
" = Foz + 20 fong + W fo + W2 Fra, 19)
ete.
The coefficients

are obtained by inserting the values (zp, wg) into (13).
Method 2 (Power Series Ansatz). Substituting the expansion (12) into the
right-hand side of the differential equation

[> 0]

FEw)= Y emlz = 20) (w —wo)*

3,k=0
and differentiating termwise for the left-hand side leads to the relation
(>} . (>}
Zjaj(z —z) = Z cjk(z — 20) (Z an(z — zo)"> (15)
j=1: 3,k=0 n=1

Equating coefficients of like terms gives a recursion formula for the a;. This
method is often easier to carry out than the first.

Naturally, the power series ansatz can also be used for differential equations
in the real domain if the right-hand side is analytic.

Ezample. A special Riccati Equation (Johann Bernoulli, 1694).
v =2+, y(0)=1.

The ansatz

[»)
y(@) =) ez’
3=0
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leads to the identity

) ) 2 o0 b
Zja]-zj"l =%+ (Za]x’) = z? +Z:cj2akaj_1
= 0 =0 k=0

and, when coefficients of like powers are set equal, to the relation

Zaka] 1 {#1 forj=2}. (16)
k=0

(j+1)aj =

Incorporating the initial condition, one obtains for the first few terms

ap =1,

j=0a = a3, a; =1,
1: 2a, 2a901, as =1;

2: 3as 2a0ap +a? +1, a3 =3%;

3: day 2a0a3 + 20,02, as =%

Thus the power series expansion begins with

473 71zt
y(z)=1+z+2° +T+—6—+
One can see immediately from the recursion formula for the a; that all a; are
positive. An inspection of the first few terms suggests that in fact a; > 1 (2 > 0).
This inequality is valid for small 7 and can be proved in general by induction
(exercise!). Therefore, we have

1
y(z)>1+z+zz+z3+...=i_— for z>0. (17)

This inequality shows that the solution can exist to the right at most up to the

point z = 1. Better methods for the estimation of solutions are derived in § 9;
cf. Example 9.V. '

IV. Exercises. (a) Give the first few terms in the power series expansion
(up to the fourth power) of the solution of the initial value problem
Yy =€e"+zcosy, y(0)=

(b) Determine the first terms in the power series expansion y = Y axz* for
the solution to the initial value problem

y=22+4° y(0)=1.
Determine the power series expansion of the solution u = ¥ bxz* of
v =43, u0)=1

and show that a; > b;. From this derive an upper bound for the number a,
where [0, @) is the maximal interval of existence of the solution y to the right.
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V. Growth Estimates. The growth of solutions of complex differential
equations can be estimated using the following theorem, which depends on a
result from § 9.

Theorem. Letw be a holomorphic solution of the initial value problem (7);
w'(z) = f(z,w) in G, w(zp) = wy (G a convez domain), where

|f(z,w)] < A(|z = 20, |w — wol)

(h(t,y) is real-valued and locally Lipschitz continuous iny). Then |w(z) —wp| <
&(|z — 20]), where ¢ is differentiable and satisfies

¢'(t) > h(t, 6(2)),  4(0) 2 0.

Hint: Apply Theorem 9.VIII to v(t) = |w(2o + €*t) — wp| with 0 < a < 2,
w(t) = ¢(t). Note that v/ (t) < h(t,v()); cf. B.IV.

§ 9. Upper and Lower Solutions. Maximal and
Minimal Integrals

In this section all quantities are again real-valued.

1. Lemma. Let ¢(z), ¥(z) be differentiable in the half-open interval Jy :
£ <z <&+a (a>0) and suppose that ¢(z) < Y(z) in an interval £ <z < £4¢
(e > 0). Then one of the following two cases holds:

(2) ¢ < in Jo;
(b) there ezists an zo € Jo such that ¢(z) < Y(z) for é < z < zy and

¢(z0) = ¥(z0) and ¢'(z0) 2 ¥/ (z0). (1)

The proof is simple. If (a) does not hold, then there exists a first point
zo > £ where ¢(zo) = P(z0). Since ¢ < ¥ to the left of zo, the left-sided
difference quotients at the point zg satisfy

(o) ~ 8(z0 —h) _ (o) ~ ¥(zo ~ R)
h

5 for h>0. (2)

The second inequality in (1) follows by taking the limit in (2) as A — 0+. &

(c) It is possible to weaken the hypotheses in the above result. The conclu-
sion of the lemma remains true if the functions ¢(z), ¥(z) are assumed only to
be continuous. In this case the relations (1) in (b) are replaced by

¢(z0) = ¥(z0), D™ ¢(z0) 2 D™%(zo), and D_¢(z0) = D-p(z0). (1)

Here D—, D_ are the left-sided upper and lower Dini derivatives, defined in
section B.I of the Appendix. Clearly, (1) also follows from (2).
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Zo

1 e

II. Defect. The defect P¢ of a function ¢ with respect to the differential
equation ¥’ = f(z,y) is the function

Pp=¢' - f(z,¢). (3)

The defect tells “how close” ¢ is to satisfying the differential equation. Solutions
y(z) are characterized by Py = 0 (the defect is 0).

Every theorem on differential inequalities for the interval J = [£,£ + a] has
a counterpart for the interval J_ = [£ — a,£] to the left of £. The corresponding
defect inequality is obtained by reflection about the point £, and the proof is
carried out by reducing the case “to the left” to the earlier case; cf. 6.I1I.(d). The
reflection transformation, ¢(z) = ¢(2¢ — z), f(z,y) = —f(2¢ — z,v), introduces
a minus sign to the defect,

(P9)(z) = ¢'(z) — f(z,0(z)) = —(P¢)(2€ — z) (4)
with the result that m the theorem for J_, the differential inequalities are re-
versed. A first example is the

III. Comparison Theorem. Let the functions ¢(z), ¥(z) be differen-
tiable in Jo : £ < z £ €+ a and let the following hold:

(a) ¢(z) <¢(z) for§ <z <E+e (€>0);

(b) Pg < Pt in Jo.
Then

o<t in Jo.

There is no assumption on f. The theorem remains true for continuous
functions ¢, ¥ with D™¢, D~ or D_¢, D_1 instead of ¢, 9.

The proof is based on showing that case (b) of Lemma I cannot occur.
Suppose ¢(zo) = ¥(zo). Then at zo,

¢'(z0) = P+ f(z0, $(z0)) < P + f(z0,%(20)) = %' (z0)
holds because of hypothesis (b). Thus (1) or (1’) certainly does not hold. &
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‘We formulate the corresponding theorem for an interval lying to the left of
the point £.

Corollary. If ¢, ¥ are differentiable in Jy = [£ — a,€) and satisfy
(a) ¢(z) <Y(z) for§ —e <z <€ (£>0),
(b) P¢ > Py in Jy ,

then it follows that

o<y in Jj.

IV. Upper Solutions, Lower Solutions. Let f(z,y) be defined in D,
D c R? arbitrary. The function v(z) is called a lower solution (or subsolu-
tion) and w(z) is called an upper solution (or supersolution) of the initial value
problem

y =f(zy) in J=[E+a, &) =n, (5)
if it is differentiable in J and
v < f(z,w) indJ, v(§)<n lower solution,
v > f(zr,w) inJd, w(§)=>n, upper solution. (6)

Naturally, it is assumed that graphv C D and graphw C D. These concepts
were introduced (in a somewhat more general way) by Perron (1915). An upper
solution runs above a solution, a lower solution below. More precisely: If v is
a lower solution, w an upper solution, and if y is a solution to the initial value
problem (5), then

v(z) <y(z) <w(z) in J:é<z<{+a. (M

These inequalities follow immediately from Theorem III. Setting ¢ = v,
1 = y, one obtains P¢ < 0 = Pv; thus (b) holds. If v(£) < n = y(£), then
clearly (a) holds, and if v(§) = n = y(§), then by (6), v'(¢) < f(&,n) = ¥'(§).
Therefore, v < y for £ < z < £ + € (¢ > 0). The second inequality in (7) is
proved in a similar manner. [ |

Upper and Lower Solutions to the Left. If J_ is an interval to the left
£ —a <z <&, then the conditions that define lower and upper solutions in the
initial value problem (5) read

v > f(z,w) in J_o, v(€)<n, lower solution, ©)
w < flz,w) in J_, w(§)>n, upper solution
and the conclusion is
v(z) <y(z)<w(z) in Jy:€—a<lz<é. (™

A common method of determining upper and lower solutions is to make small
changes in f to find functions fi, f2 such that

fi(z,y) < f(z,y), respectively fo(z,y) > f(z,y),
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and such that the corresponding initial value problems for the equations
v' = fi(z,v), respectively v’ = fo(z, w),

can be explicitly solved.

V. Example. We consider Bernoulli’s example from 8.II1I,
¥ =z2+4% y0)=1

For positive z, y? < z2 + y?, thus using fi(z,y) = ¥?, one obtains a lower
solution
1

1-z°

V=% v0)=1 = v(z)=

We see from this that the solution exists to the right at most up to the point
z = 1. Thus one can assume that 0 < z < 1 and obtain an upper solution by
setting fo(z,y) = y* + 1:

w=wt+1l, w0)=1 = w(:c)=ta.n(:c+-:1£).
Thus without computational effort one obtains the estimates

1 T

=5 <vle) <tan(s+7)

T <vlz) <tan{z+-

as well as an estimate for the asymptote z = b (y — oo as T — b—)
078< 7 <b<L.

A significantly better upper solution can be obtained using the ansatz

w) = (C > 1)

1-
The inequality w] > w?+z? is equivalent to c—1 > (1 —cz)?z? for 0 < z < 1/ec.
For example, one can take ¢ = 17/16. It follows that

16
16 — 17z
The solution remains in the domain illustrated in the figure. Better bounds for
b are obtained by computing the solution y with the Lohner algorithm, which

gives exact bounds; cf. XVI. Let us assume that 7 < y(a) < y1. Then a lower
solution v for z > a is obtained from v(a) = yo, v’ = a® + v?; i.e,,

wi(z) = and 0.94<%—? <b<1.

u(z) = atan(az+¢) with a?+c= arctango/a.

Solving ax+c = m/2, the asymptote z = b; of v is obtained; it is an upper bound
for b. Now we can construct an upper solution w from w(a) = y1, w’' = b? +w?,

ie.,

w(x) = by tan (b]_.’E + d) with b;a + d = arctan y]_/b]_.
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Here the asymptote by of w, a lower bound of b, comes from the equation
b1z + d = 7 /2. For example, the Lohner algorithm produces

31 308
a =35 =0.96875, y(a) € 942.81425692 .,

and one obtains in the way just described,

b (bo,b1) = 0.96981 065393
the notation used above represents an interval; for example, 4. is the
h ion used ab interval; f le, 45500 is th

interval (4.5130,4.5346)). The success of the method, here shown impressively,
depends on good upper and lower solutions. For example, it works with the
tangent function used above for the equation y' = g(z) + 3.

VI. Maximal and Minimal Solutions. Definition and Theorem.
If f(z,y) is continuvous in a domain D, then the initial value problem

v =f(z,y), y)=n with ({,n)eD

has two solutions y.(z), y*(z) that come arbitrarily close to the boundary of D
both to the left and the right and that have the following property:
If y(z) is any solution of the initial value problem, then

v+(z) < y(2) < ¥*(2) (8)

(each of the inequalities holds as long as the functions involved are defined).
The solution y.(z) is called the minimal solution (minimal integral), and y*(z)
is called the mazimal solution (mazimal integral) of the initial value problem.
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Proof. First assume that f(z,y) is continuous and bounded in the strip
J xR, J = [£,€+a]. Let y(z) be a solution of the initial value problem (5) and
w = wn(z) be a solution of the initial value problem

o = f(e,uw)+ > ) w(§)=n+% (n=1,23,... ©)

(if (9) has more than one solution, then one of them is chosen). If Theorem III
is first applied with ¢ = y, ¥ = w,+; and then with ¢ = wny1, ¥ = wy,, then
one obtains the inequalities

¥(z) < wn41(2) < wn(z) inJ
Thus the sequence w, is monotone decreasing and has a limit
y*(e) = lim wn(z) 2 y(z). (10)

In fact, by Lemma 7.III, this limit is uniform, since (9) implies that |w}| <
C = sup |f| + 1, and hence the sequence of functions (w,) is equicontinuous.
Thus one can pass to the limit as n — 0o under the integral sign in the integral
equation equivalent to (9),

1 1 z
wa(z) =0+ = + 2(z—€) + / F(twn (D)) dt, @)
n n €
and obtain that the limit satisfies the integral equation
T
y*(g) =7+ /E £(t,57(@) dt.

Therefore, the function y*(z) is a solution to the initial value problem, and
because of (10), it has the property y(z) < y*(z) proposed in (8).

In a corresponding manner the minimal integral y,(z) can be obtained as
the limit of a related sequence v,(z); here one has to replace the term 1/n by
—1/n in both places in (9).

This proves the theorem under the special assumptions. The general theorem
can now be derived from this result following the procedure described in § 7 for
the Peano existence theorem. This procedure has to be modified to the extent
that instead of an arbitrary solution, the maximal solution is chosen in each
step of the extension. E

VII. Remarks. (a)If f is continuous, then the initial value problem is
uniquely solvable if and only if y.(z) = y*(z).

(b) If the initial value problem is not uniquely solvable, then the whole
region between the maximal solution and the minimal solution is filled up with
solutions. To be more explicit:

If f(z,y) is continuous in the strip J x R, J = [£,£ + a], and if y.(z) is the
minimal and y*(z) the maximal integral of the initial value problem (5), then a
solution of the initial value problem (5) goes through each point of the set

H={(z,9):z € J,3.(c) <y <y ()}
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The proof is an exercise. Hint: If a solution z, which starts at a point (zg, z0) €
H, meets, e.g., y* to the left of z, say, 2(z1) = y*(z1), T1 < To, then one may
set z(z) = y*(z) in [£,z1).

VIII. Theorem. Let f be continuous in the rectangle R = J x [b, (],
J = [£,€ + a]. Let the functions v, w be differentiable in J and let

'U’Sf(«'L','U) i J, 'U(ﬁ)_<_77 or
wIZf(:L‘)w) in J, w(ﬁ)Sn

(11)
If y. € CY(J) is the minimal solution and y* € C'(J) the mazimal solution of
the initial value problem (5), then

v<y* or w2y, in J

This remains true for continuous functions with Dv, Dw (D any Dini deriva-
tive). It it is assumed that the graphs of all four functions lie in R.

For the proof one extends f as a continuous and bounded function to the
strip J x R (cf. the proof of 6.1II) and determines w, (z) using equation (9). By
Theorem III, v < wn (note that Dv < f(t,v) implies D~v < f(t,v) by B.II).
Since the wy, converge to y*(x), it follows that v < y* (it is easy to see that y*
is also the maximal solution relative to the extended function f). The second
inequality ¥+ < w is handled in a similar manner. n

Corollary on Upper and Lower Solutions. If f is continuous and the
solution y of the initial value problem (5) is unigue, then upper and lower solu-
tions can be characterized by the weak inegqualities (11) (with < instead of <).
It follows immediately from the above theorem that the inequalities (11) imply
v<y<winld.

Ezample.

y =vll, y0)=0.
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The maximal solution y* and the minimal solution y, are given by

2
y*(z) = e y«(z) =0 for z2>0,

2
¥ (z) =0, y.(z)= vy for z<0

(see Example 2 of 1.V). Make a sketch of all solutions for the proof.

‘We conclude the discussion of differential inequalities with a variant of The-
orem III, in which it is assumed that the function f satisfies a local Lipschitz
condition in y (the reader will recall the definition from 6.IV). This case applies
to most applications, in particular those where f, is continuous. Our proof is
independent of the earlier results, and the conclusion is sharper with respect to
strict inequalities.

IX. Comparison Theorem. Let f: D — R satisfy a local Lipschitz
condition in y. Let ¢, ¢ be differentiable in J = [£,€ + a], and let

(a) ¢(&) < ¥(£), i

(b) P¢ < Py (which is¢' — f(z,¢) <¢' ~ f(z,9)) in J.

Then ¢ < in J, and with respect to strict inequalities,
$<y inJ or ¢=¢ in[6,d, d<yin(cé+a(cel).

Corollary. For an interval J_ = [€ — a,£] to the left of £, (a) #(&) < ¥(€)
and (b') P¢ > Py in J_ implies p < in J_ orp =1 in [¢,€], d < ¢ in
£ —a,c] withce J_.

* Proof. We write f(¢), f(%) as an abbreviation for f(z, ¢(z)), f(z,¥(z)).
There exists L > 0 such that [f(¢) — f(¥)| < L|¢ — 9| in J; cf. Exercise 6.IX.
Hence the function w = ¥ — ¢ satisfies

w' =19 —¢' =Py + f(¥) - Po— f(¢) 2 f(¥) — f(¢) = —Llwl.

Assume that w(d) < 0 for some d € J and that I = [b,d] C J is the largest
interval to the left of d where w < 0. In this interval w’ > Lw, hence

(w(x)e_l’“)’ = (w' — Lw)e L > 0.

Thus the function w(z)e™%* is monotone increasing in I and therefore negative
in I. This shows that b = a and w(a) < 0, which is a contradiction. Hence
¢p<t¢inJ.

Now assume that w(d) > 0 and that I’ = [d,d'] C J is the largest interval
to the right of d where w > 0. In I’ we have w’ > — Lw, which implies

(eP*w)" = eL=(w' + Lw) > 0.

Reasoning as before, we conclude first that e**w(z) is increasing in I', then
that w(d’) > 0, and finally that d' must be the right endpoint £ + a of J. This
completes the proof of the theorem. The corollary is left to the reader’s care. B
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Consequences of the Comparison Theorem. (a) Upper and lower so-
lutions. Let y be a solution of the initial value problem

yl = f(:z:,y) in J, y(g) =7 (5)

where f is locally Lipschitz continuous in y. Then upper and lower solutions
can be characterized by the inequalities (11) (with equality permitted), that is
to say, these inequalities imply

v<y<sw in J

But now the theorem gives a stronger statement than the one in section VIII.
For example, if y = v in J' = [£, ¢, then v'(z) = f(z,v(z)) holds in J'. Thus
the strong inequality v < y holds in Jy = (£,£ + a] if either v(£) < 7 or if there
exists a sequence (z,) in Jo with limz, = £ such that v'(zn) < f(Zn,v(zy))
(since v is usually given in applications and y is the unknown solution, these
conditions can be checked). This follows readily from Theorem IX and applies
also for upper solutions.

(b) A uniqueness theorem for the initial value problem (5) follows immedi-
ately from this theorem.

(c) If y and z are solutions of the differential equation and if y(zo) < 2(zo),
then it follows that y < z in the common interval of existence of both solutions
(to the right and to the left of zg).

Part of the previous theorem, the uniqueness to the right, can be proved
under the weaker assumption that f only satisfies a one-sided Lipschitz condition

flz,y) — flz,2) < L(y—2) for y> =z (12)
‘While the usual Lipschitz condition says that the difference quotients

fz,y) — f(z,2)
y—2
lie between —L and L, the one-sided condition implies only that they are < L.

The proof of the following theorem is left as an exercise for the reader. Hint:
Study the previous proof

X. Theorem. Let f satisfy a local one-sided Lipschitz condition of the
form (12). Then the inequality ¢ < P in J = [£,£ + a] follows from

(a) ¢(&) < ¥(8),

(b) P <Py in J.
In particular, e uniqueness theorem “to the right” holds for the corresponding
initial value problem.

Remark. This theorem applies in particular to functions f that are monotone
decreasing in y. Such functions satisfy a one-sided Lipschitz condition with
L=0.

Ezercise. Give an example of a monotone decreasing, continuous function
f(y), for which the stronger hypotheses of Theorem IX are not satisfied.
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XI. Exercise. Let the function f(z,y) be defined for z > 0 by
2z for y>z2, z2>0,
flz,y) =< 2y/z for |y|<z%, =z>0,
-2z for y<-—-z2, z2>0.

Is f continuous in [0,00) x R? Find all of the solutions to the initial value
problem

y = flz,y) for z2>0, y(0)=n.

For which values of 7 is the solution unique? Give the maximal and minimal
solutions in the nonuniqueness case.

XII. Exercise. Construct upper and lower solutions for the following
initial value problems

(@) ¥ =2+4% w(0)=1..
b) v =z4++/1+92, y0)=1.

In the case (a), if 0 < z < a is the maximal interval of existence to the right,
calculate two bounds a; < a < az with az—a; < 0.05. Compare this to Exercise
8.IV.(b).

Supplement: The Separatrix

Here we consider differential equations
¥ = f(z,y) for 220 (13)

that have the following (at first imprecisely formulated) property: There exists
a special global solution ¢ (i.e., one that exists in [0, 00)) which is distinguished
by the property that the solutions above ¢ and the solutions below ¢ form two
classes of solutions such that within the classes solutions have similar behavior
for large z, whereas two solutions taken from different classes have completely
different behavior. We give two examples to illustrate this property.

Ezample 1. y' =z~ 1/y (y > 0).

Ezample 2. ¢ = z3 + 4.

In the first example, the special solution ¢ is the only bounded global solu-
tion. The solutions above ¢ tend to co as £ — oo, while every positive solution
beneath ¢ exists only in a finite interval [0,b) and tends to 0 as z — b—.

In the second example, ¢ is the only global solution. The solutions above ¢
tend to 400 and those below ¢ tend to —oo as = approaches the right endpoint
of the (finite) maximal interval of existence.
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In this connection, the solution curve C = graph ¢ is called a separatriz: It
“separates” solutions with different behavior. Various definitions of the separa-
trix can be found in the literature.

Differential inequalities provide a powerful tool for dealing with such ques-
tions.

XIII. Existence of Global Solutions. Solutions of (13) that exist in
[0,00) are called global solutions. Let f be continuous and locally Lipschitz
continuous with respect to y (for instance, suppose fy is continuous) on a set
D:z>20,a<y<f(-c0<a<f<L o). Ifv, ware two functions with the
properties v < w and Pv < 0 < Pw in [0, 00}, then every solution y of (13) with
v(0) < y(0) < w(0) lies between v and w on [0,00). This follows immediately
from Theorem IX. The following theorem with reversed differential inequalities
also follows from Theorem IX, but the proof is less trivial.

Theorem. Let v and w be functions that are differentiable in [0,00) and
satisfy the inequalities

v<w and Pw<0<Pv in [0,00).

Then the differential equationy’ = f(z,y) has a global solution ¢ withv < ¢ < w
forz > 0.

Proof. Let y, denote the (unique) solution of the initial value problem
¥ = flz,y), y(m)=w(n) (n=1,23,..). (An)

It follows from applying Corollary IX twice on the interval [0, n], which lies to
the left of the point £ = n, that the inequalities v < y, < w hold in [0,n].
In particular, yn,+1(n) < w(n) = yn(n), and hence, again using Corollary IX,
Ynt1 S Yp In [Oan]

We fix a number a > 0. If n > @, then the inequalities v < yp+1 < yp < w
hold in the interval [0,a]. Since the sequence (y,) is monotone decreasing,
¢(z) := limy,(z) exists in [0, a] and satisfies the inequalities v < ¢ < w there.
The set M, = {(z,y) : 0 < z < a,v(z) < y < w(z)} is compact, and the
function f is bounded on M,, say |f| < L. Thus, for n > a, the functions y, are
Lipschitz continuous with Lipschitz constant L in the interval [0,a]. Uniform
convergence on the interval [0, a] now follows from Lemma 7.II1.

Passing to the limit in the corresponding integral equation

yn(x) = yn(o) + Am f(tnayn(t)) di

shows that ¢ is a solution of (13) in the interval [0,a]. Since a is arbitrary, the
rest of the theorem follows. ]

Remark. If there exist sequences (z,), (z},) tending to oo, with (Pv)(z,) >
0, (Pw)(z!) < 0, then the strong inequalities v < ¢ < w hold in [0, c0). This
follows again from Theorem IX.
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Example 1 with v; = 1/(z+27%), was Example 2 with v, = —z — 1/322,
in the text (the dashed curve is ¢) w=—z

Note that one can also use the sequence of solutions z = z,, defined by

2= f(z,z), z(n)=v(n) (n=1,23,...) (Bn)

in the construction of a global solution. One obtains v < z;, < 2p41 < Yn41 <
Yo <win [0,n),n=1,2,3,...

We apply this theorem to the two examples given at the beginning of this
supplement.

Ezample 1. The inequality Pv > 0 holds for v = e™%, and the inequality
Pw < 0 is satisfied by the function

2—z for 0<z<1,
w(z) =
1/z for z>1.

Thus there exists a global solution ¢ with e™* < ¢(z) < 1/z. The reader should
show that v; = 1/(z + z~2) is also a lower bound.

Ezample 2. One can chose v = —(z + 1), w = —z, as can be easily seen.
Thus there exists a global solution ¢ that satisfies the inequality —(z + 1) <
#(z) < —z. The reader should show that v; = —z — 1/3z? is a better lower
bound.

XIV. Uniqueness. The characterization of the distinctive global solu-
tion differs from case to case, and it seems impossible to give a sufficiently general
uniqueness theorem. Instead, we illustrate how to proceed in certain specific
cases. Suppose that f, is continuous in D. If ¢ and 4 are two global solutions
with ¢ < 9, then by the mean value theorem, the difference u = ¥ —¢ > 0
satisfies

v =9y —¢' = f(z,9) - f(z. ) = fy(z,y")ulz), (14)
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where ¢(z) < y* < ¥(z). We consider again the two examples and show how
one can use (14) to derive a uniqueness result.

Ezample 1. Here the global solutions ¢, 1 are bounded; that is, there exists
L > 0 such that 0 < ¢ < ¥ < L holds in [0,00) and hence f,(z,y) = 1/4* >
1/L? := a. Thus

u' > qu, which implies that u(z) > u(0)e®.

But u is bounded by assumption. This contradiction proves the assertion made
at the beginning that there is only one bounded global solution. The estimate
v < ¢ < 1/z (see XIII) shows that ¢ behaves like 1/z as z — oo and that

1 1 1
—-=< < =.
peler, ¢(z) -

Ezample 2. Let y be a solution and y(a) > —a for some a > 0. It is easy to
see from the differential equation that there exists b > a with y(b) > 0. Since
the solution of the initial value problem v’ = v3, v(b) = y(b) is a lower solution
to y and since there exists ¢ < oo such that v(z) — 0o as z — ¢, it follows that
y(z) is not a global solution.

If ¢ and 9 are global solutions with ¢ < 9, then accordingly, ¥(z) < —z.
Thus in (14) we have fy(z,3*) = 3y*% > 322, and hence u = 1) — ¢ > § exp(z3)
where § = u(0) > 0.

In particular, z = —¢ > §exp(z®). Since z satisfies 2’ = 23 — 23, we have
z' > 123 for large z. This implies in a manner similar to the case above that
2 = —¢ exists only in a finite interval [a, b) and tends to co as £ — b. Therefore,
there exists only one global solution. This proves the assertion made at the
beginning for the second example.

b

Remark. In the two examples, each local solution can be extended to the
left to —oo (proof follows by considering the sign of f). Thus the distinguished
solution exists in R, and the separatrix C' = graph ¢ divides the zy-plane into
two domains G, (above C) and G2 (below C). If y is a solution of the differential
equation with the initial value y(£) = 7, then the location of (£,7) instantly
gives information about the qualitative behavior of the solution y for increasing
positive z.

XV. Exercises. (a) Show that the qualitative behavior from Example
1 also holds for the differential equation

yY=z-yP (y>0) with a>0,3>0.

(b) Show that the same qualitative statements hold for the differential equa-
tion

y =z +|y/Psgny with a>0,8>1

as in Example 2 (which is the case a = 8 =3).
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Hint. One can take w = —z%/# and v — —ae® with appropriate a > 0. A
better choice is v = —(a + z!+%).

(c) Denote the solution of the differential equation 3’ = f(z,y) with initial
value y(0) = a by y(z;a), and denote by [0,b,) with 0 < b, < 0o the maximal
interval of existence to the right. Prove the following

Theorem. Let the function f be continuous and satisfy a local Lipschitz
condition in y. Let A be the set of initial values a such that y(z;a) — oo as
T — b,. Assume that for every b > 0 there exist initial valuesa € A anda’ € A
such that by, ber > b. Then

¢(z) = y(z;80) with ag=infA
is a global solution of (13).

(d) Show that all solutions y(z;a) of the differential equation 3y’ = Z(1 +
y?) cos z tend to +00 or —oo as T — b,, where b, < %w, and compare this result
with the assumptions on b, in the preceding theorem.

(e) In the differential equation

¥ = h(z) +9(y)

let h be continuous in [0,00) and let g be locally Lipschitz continuous in R.
Further, let g(y) — %00 as y — %00, and let the integrals

o0 -«
/ I / L3
« 9) —c0 9(¥)
be convergent (we assume |g(y)| > O for |y| > «). Show that there exists a
global solution.

Remark. In the American Mathematical Monthly 94 (1987), p. 694, one finds
Example 1 as Problem 6551: “Prove that the differential equation y' =z —1/y
has a unique solution in [0, 00) which is positive throughout and tends to zero
at +00.” In Vol. 96 (1989) three different solutions are given on pages 631-635
and 657-659, but no general method is suggested.

XVI. Computing the Separatrix. Theorem XIII not only establishes
the existence of a separatrix ¢, it can also be used to determine it numerically.
By solving the initial value problems (A,) and (B,), one obtains upper and
lower bounds for ¢. R. Lohner (1988) developed an algorithm that gives ezact
upper and lower bounds for the solution of initial value problems (for systems).
It applies to a large class of functions f and uses the programming languages
PASCAI-XSC or ACRITH-XSL, which reflect advances in interval arithmetic.
I owe Dr. Lohner many thanks for carrying out the calculations in the two
examples. They lead to the following surprisingly good (and, as said, exact)
bounds for the initial value ¢(0):
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Ezample 1: v(z) = 1/(z + 1/2?), w(z) = 1/:1:, (An), (By) with n = 6 gives

#(0) € 1.28359 87104 63599 52345 2644 30

Ezample 2: v(z) = —z — 1/322, w(z) = -, (An), (B,) with n =5 gives

4(0) € —0.66727 09125 44323 65855 63> 61

XVII. Exercise. Driver’s Equation. The initial value problem
y'(@) =1+ f(y) - f(z), y(0)=

where f : R — R is continuous, has y(z) = z as a solution. R.D. Driver
posed the problem (American Mathematical Monthly 73 (1966), 783, advanced
problem 5415) of determining whether this is, in general (i.e., for all f), the only
solution. Some results on uniqueness were given in the solution section of the
Monthly (76 (1969), 948-949), but much was left to be desired. Our treatment
relies heavily on the results of this section on differential inequalities.

If y is a solution, then z(z) := —y(—z) is a solution to the corresponding
problem with fi(s) := f(—s). Therefore, we consider only solutions for z > 0.
Prove the following:

(a) Replacing f(s) by f(s)+const. does not change the problem. Hence one
may assume f(0) =0.

(b) If y is a solution and y(c) = ¢ (¢ > 0), then 2(z) = y(z+c)—cisa
solution of the problem with f replaced by f.(s) = f(s+¢) —~c.

(c) y*(z) = z is the maximal solution to the right, i.e., y(z) < z for z > 0
and every solution.

(d) Uniqueness to the right holds if f satisfies locally (i.e., in compact inter-
vals) a one-sided Lipschitz condition f(y) — f(2) < L|y — z| for y > 2.

(e) Uniqueness holds if f = g — h, where g and h are (weakly) increasing.

Hints: (c) Let F(s) = exp f(s). The differential equation is equivalent to
exp (' — 1) = F(y)/F(z). Using e°~* > s, one obtains ¥’ < F(y)/F(z). Hence
y is a subsolution to the problem with separated variables 2z’ = F(z)/F(z),

z(0) = 0, which gives y(z) < z(z) = =z.
(e) Let f be increasing. Then by (c), 3’ < 1. Consider the function

) = | :x)“ — £(s)) ds = K'(z) = F@)(&/ - 1).

Assume 0 = f(0) < f(z) < 1 and y(z) > 0for 0 < z < b. Since ¥’ < 0 and
k > 0 in [0, 8], it follows that k(z) = 0 and hence y(z) = z in [0,b]. Use (b) to
show that y(z) = z in [0, ] implies y(z) = z in [0,c + €], € > 0.

In the general case f = g — h we have y' > 1+ g(y) — g(z). Since 2’ =
1+g(z) - g(z), 2(0) = 0 implies z(z) = z, Theorem VIII shows that y > z. Use
(c).

Our treatment follows that of G. Herzog and R. Lemmert, Remarks on
Driver’s equation, Ann. Polon. Math. LIX.2 (1994), 197-202. The authors
also construct an example of nonuniqueness.
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XVIII. Exercise. Prove the following:

Theorem. Let v, w be two solutions of the differential equation y'(z) =
f(z,y) in the interval J = [€,£+a]. Assume that v(§) < w(€) and that f(z,y) is
(weakly) increasing or decreasing iny. Then (i) v < w in J and (ii) w(z) —v(z)
is increasing or decreasing, respectively.



Chapter 111
First Order Systems.
Equations of Higher Order

§ 10. The Initial Value Problem for a System of
First Order

I. Systems of Differential Equations. Direction Fields. By a first
order system of differential equations (in explicit form) we mean a set of simul-
taneous equations of the form

vy = filz,y1,- -2 Yn)

(1)

y;,, = f'n.(x) Yi,.-- )y‘n.)'

Here the n functions fi(z,¥1,-« sYn)s+--sfa(Z1¥1,.-.,Yn) are defined on a
set D of (n + 1)-dimensional (z,y1,...,%¥n)-space R™1. A vector function
(y1(z), - - -, yn(z)) is a solution (or an integral) of (1) in the interval J if the func-
tions y, (z) are differentiable in J and if (1) is satisfied identically when they are
substituted into the equation. Naturally, we require (z,y,(z),...,yn(z)) € D
for £ € J. Vector notation will be used whenever possible. We denote n-
dimensional column vectors with boldface letters, as shown in the following:

a y1(x) fi(z,y)
a=|:], y@=| : |, flzy)= :
Gn Yn(z) fa(z,¥)
In this notation, statements of the type “y(z) is continuous, differentiable, ...”

mean that each component y, is continuous, differentiable, ... (v = 1,...,n).
Derivatives and integrals of a vector function y(z) are also defined component-

105
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wise:
b
%@\ [ w@as
y'(z) = : , y(z)dz = :
/ a b
i) / Yn(z) dz
Written in vector notation, system (1) reads
y' =f(z,y). 1)

As in the case n = 1, equation (1’) has a geometric interpretation. The graph
of a function y(z) represents a curve in R"'. The vector function f(z,y)
determines a direction field in D, which is defined as follows: To each point
(Z,¥) € D is associated a direction, given by the (n + 1)-dimensional vector
(1,a) where a = f(Z,¥), or equivalently, by the line y = § + (z — Z)a. Solutions
of the differential equation (1’) have the property that their graphs “fit on the
direction field.”

II. Initial Value Problem. An initial value problem for (1) asks for a
solution that passes through a given point (€,17) € D, that is, one that satisfies
the initial conditions

wé)=n (¥=1,...,n) or y()=mn (in vector form). (2)
Initial value problem (1’), (2) is equivalent to the system of integral equations
yie)=n+ [ £t,y)d ©

¢ :

More precisely: Let f be continuous in D and (z,y(z)) € D for z € J. Suppose
y(z) is differentiable in J and satisfies equation (1’) and the initial conditions
(2). Then y' is continuous and y(z) satisfies the integral equation (3) for = €
J. Conversely, if y(z) is a continuous solution of (3) in J, then f(z,y(z)) is
continuous in J. Hence y(z) is continuously differentiable and satisfies (1’) and
(2). The notation |a| for the norm of a vector a € R™ was introduced in 5.III.(a).
A special case is the Euclidean norm |a|. = /a2 + - - + a2.

III. Equivalence of Norms. Lemma. All norms in R™ are equivalent;
i.e., if |a|, |a]* are any two norms in R™, then there exist constantsa >0, > 0
such that

alal* < |a| < Bla]* forall aeR™
Proof. Clearly, it is sufficient to prove the theorem for the special case |a|* =

|ale. If e, is the vth unit vector (i.e., e, is 1 in the vth position, all other
components are zero), then it follows from the expansion a = ) a,e, that

2l <D lave| =) lavlles] < lale Y le.| = Blale.
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This proves the second inequality in the lemma. It follows at once from this in-
equality that the function ¢(x) = |x| is continuous (in the sense of the Euclidean
norm). Indeed, by (5.2), we have

l6(x) — (W)} = |Ix| — ly]| < Ix =yl < Blx — yle.

To ptove the first inequality, let S be the unit sphere in R"; that is, S is
the set of vectors with |al. = 1. Since S is compact, the continuous function
#(x) = |x| assumes its minimum on S at a point ag € S. Because ag # 0, we
have

la| > |ag| =a>0 forall a€Ss.

Since an arbitrary vector b # 0 can be written in the form b = ¢-a with ¢ = |b|.
and a € S, the first inequality in the lemma follows:

|b| = c|a| > ac = a|ble.

IV. Lipschitz Condition. A vector function f(z,y) satisfies a Lipschitz
condition with respect to y in D (with Lipschitz constant L) if

|f($)y) —f(:z,}‘r)| S Lly - yl for (CU,S'), (CU,S’) €D. (4)

It follows from Lemma III that the question whether f satisfies a Lipschitz
condition is independent of the chosen norm. However, the magnitude of the
Lipschitz constant L depends on the choice of the norm.

A function f is said to satisfy in D a local Lipschitz condition with respect
to y if for every point (z,y) € D, there exists a neighborhood U : [z — Z| <
6, |y — ¥| < & (6 > 0) such that f satisfies a Lipschitz condition in DNU. In
general, the Lipschitz constant may vary from neighborhood to neighborhood.

V. Lemma. (a) If D is convez and if f and all components of the Ja-
cobian 0f/0y = (0f,/0yu)j; =1 are continuous and bounded in D (u,v =
1,...,n), then f satisfies a Lipschitz condition with respect to 'y in D.

(b) If D is a domain and if £ and 0f /By are continuous in D, then f satisfies
in D a local Lipschitz condition with respect to y.

(¢) Iff € C(D) satisfies in D a local Lipschitz condition iny, then f satisfies
a Lipschitz condition in 'y on compact subsets of D.

Proof. (a) Applying the mean value theorem to f,(z,y), we obtain

fl’(x)y) - f.,(:z:,}") = Z zf"éz—;yl

p=1

(yp - 'yp))

where (z,y*) is a point on the line segment connecting (z,y) and (z,¥). It
follows that there exists a constant K such that

Iﬂ@w—ﬂ@ﬂﬁKq?m—%L 4)
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and hence f satisfies a Lipschitz condition with respect to the maximum norm
la] = max lay|. Part (b) is an immediate consequence of part (a), since a function

from C(D) is bounded in compact subsets of D. (c) If K C D is compact and
the proposition with respect to K is false, then there exist sequences (z,¥r),
(zr,Zx) in K with

[f(zx, y&) ~ £(zr,26)| 2 klyr —2z] (A=1,2,...). (*)

Because K is compact, we may assume that (zx,yr) — (Zo,¥o0) € K, and since
f is bounded in K, it follows from (*) that (z, z;) tends to the same point. This
leads to a contradiction, since for large k, the points (zx,¥r), (zr,2x) belong to
a neighborhood of (o, yo), where f satisfies a Lipschitz condition in y. |

‘We now state and prove the basic
VI. Existence and Uniqueness Theorem. Let f(z,y) be continuous
in a domain D C R™"? and satisfy a local Lipschitz condition with respect to y

in D (this hypothesis is satisfied, for instance, if 0f /8y € C(D)). If (§,m) € D,
then the initial value problem

y =f(z,y), y)=n (5)

has ezactly one solution. The solution can be extended to the left and right up
to the boundary of D.

The line of reasoning used for the case n = 1 in §6 carries over. The following
special case is proved first (compare with Theorem 6.I).

VII. Theorem. Letf(z,y) be continuous and satisfy the Lipschitz con-
dition (4) in J X R™, J = [£,€ + a]. Then there is ezactly one solution to the
initial value problem

y =f(z,y), y(¢)=n (6)

The solution exists in of J.
Proof. The initial value problem (6) is equivalent to the integral equation
y@=n+ [ tey@)a m (7
which can be written, using the more concise operator notation, in the form
y=Ty where (Tz)(z)=n+ /: f(t,2(t)) dt. (7)

The set of continuous vector-valued functions defined on J with the norm

| = max |a(z)le~22=
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is a Banach space (| - | is the norm in R™ that appears in (4)). The operator T
defined by (7') maps this space into itself. The proof that T satisfies a Lipschitz
condition with Lipschitz constant % is the same as the one given in 6.1. In this
proof, y(z) is now a vector function, and the two simple facts in the following
lemma are needed.

VIII. Lemma. If z(z) is continuous in an interval [a,b] and |- | is a
norm in R", then the scalar function ¢(z) = |z(z)| is continuous in [a,b] and
the inequality

/ab z(z) dz

Proof. 1t follows from inequality (5.2) that
|d(zk) — #(z)| < |z(zk) —2(z)] = 0 as =z — z;

therefore ¢(z) is continuous.

Let us denote the integrals in the lemma by I; and I5. Then the inequality
|I1] € I must be proved. We consider a partition P:a =29 < 7, < - <
z, = b and its measure of fineness |P| = max{(z; — zi—1) : ¢ = 1,...,p}.
Corresponding Riemann sums are given by

< /ab |z(z)| dz

holds.

4 b

o(P;z) = Z(:vi—-:vi_l)z(:ci) for Il=/ z(z) dz,
P b

a(P;lz]) = Z(:c,-—:ci_l)lz(a:iﬂ for Ig—':/ |z(z)| dz.
i=1 a

The triangle inequality implies
lo(P;2)| < o(P;]z]). (%)

Now consider a sequence (Ps) of partitions with lim |Py| = 0. Then, by the
Riemann definition of the integral,

0(Pg;z) — Iy and o(Pe;z]) — I
as k — oo. The inequality |I;| < I now follows from «). |

The solutions of (6) are the fixed points of T. Since T is a contraction,
Theorem VII follows from the Contraction Principle 5.IX. The solution is the
limit of a uniformly convergent sequence of successive approximations

Yirr = (Tye)(z) =n+ /: f(t,ye(t))dt (k=0,1,2,...). (8)

The first term yo(z) € C(J) can be arbitrarily chosen. | |
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The general theorem is now derived from this special case in a series of steps
that are completely analogous to those in §6 for the one-dimensional case.

In §7 and §8 two additional existence theorems were proved. The extension
of the proefs of these theorems to the n-dimensional case is also straightforward.
Consequently, we will state these theorems without proof.

IX. Peano Existence Theorem. If f(z,y) is continuous in the do-
main D and (€,m) € D, then the initial value problem (5) has at least one
solution. Buery solution can be ertended to the left and right up to the boundary
of D.

Remark. The results on upper and lower solutions and on maximal and
minimal solutions obtained in §9 do not extend to general systems, but only to
systems that have a certain monotonicity property. We shall treat this impor-
tant question in Supplement I below.

X. Existence Theorem for Complex Differential Equations. Let
the vector function £f(z,w) of n+ 1 complez variables (z,w) = (2,wy, ..., wn)
with values in C™ be holomorphic in a domain D C C*™! (i.e., each component
is continuously differentiable with respect to all n + 1 complex variables), and
let (29, wp) € D.

Then the initial value problem

w =f(z,w), w(z)=wp (9)

has ezactly one holomorphic solution w(z). The solution ezists (at least) in the
disk K : |z — 2| < @, where @ > 0 is determined as in 8.I1.

The solution w (i.e., each of the components w,(2)) can be expanded in a
power series about the point zp with a radius of convergence > a.

XI. Autonomous Systems. In thissection, we develop a general frame-
work for problems of the type introduced in 3.V. We call the system of differ-
ential equations (1) autonomous if the right-hand side f(z,y) does not depend
explicitly on z. Thus an autonomous equation has the form

Y =f£(y). (10)

Autonomous equations frequently arise in applications where the independent
variable is time. With these problems in mind, we denote the independent
variable by ¢t and write y = y(t). In the results that follow, f is assumed to be
locally Lipschitz continuous in an open set G C R®. Thus Theorem VI applies
to (10) and it follows that initial value problems are uniquely solvable and the
solution can be extended to the boundary of D = R x G (cf. the definition in
6.VII). This leads us to a number of conclusions about solutions to (10):
(a) A solution y exists in a maximal open interval J = (a, b).
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(b) If y is a solution of (10) in the interval J = (e, 8), then z(t) := y(t +c)
is a solution in the interval J_ = (@ —¢, 8 —¢).

(c) Phase Space and Trajectories (Orbits). For autonomous systems, the
space R" is called the phase space. The curve C =y(J):={y(t):t€ J} C G
in the phase space generated by a solution y on a maximal interval of existence
J = (a,b) is called the trajectory or the orbit of y; cf. A.I for the definition
of curves. If z is another solution with z(fg) € C and z(¢) = y(t;) for some
t, € J, then ¥(t) = y(t1 — to + t) is also a solution by (b), and the relation
z(to) = ¥(to) implies z = §. Therefore, the trajectories of y and z coincide.

If the “half trajectory” y([c, b)) with ¢ € J is contained in a compact subset
of G, then b = oo; a corresponding statement holds for the interval (a, .

(d) The Phase Portrait. Two trajectories are either disjoint or identical.
Each point of G belongs to exactly one trajectory. The collection of all trajec-
tories is called the phase portrait of the differential equation; cf. 3.V.

(e) The two differential equations y’ = f(y) and y’ = AM(y) (with A # 0)
generate the same trajectories, hence the same phase portraits (with the same
orientation if A > 0).

(£) Periodic Solutions. If y is a solution and y(tg) = y(t1) for some tp # ¢,
then y is periodic with period p = ty — t;. This follows from (c), with z = y.
The maximal interval of existence is R. A nonconstant, continuous, periodic
function has a smallest period T > 0, also known as the minimal period.

(g) Critical Points. A point a € G is called a critical point (also a stationary
point or equilibrium point) of f if f(a) = 0. If a is a critical point of f, then
y(t) = a is a solution in R. The corresponding orbit is the singleton {a}.

(h) If the solution y exists for t > tp and if a = tll.%lo y(t) exists and belongs

to G, then a is a critical point; i.e. f(a) =0.

Proof of (h). Suppose ¢ is a real-valued C-function and Jim ¢t)=a#0.
If o > 0, then for large t, ¢'(¢) > /2. It follows that tlim #(t) = co. Similarly,
o < 0 implies lim¢(t) = —oco. Now the hypotheses imply that limy’(t) =

f(a). The preceding argument applied to the components yx(t) of y shows that
limy’(t) =0, i.e., f(a) = 0. |

Supplement I: Differential Inequalities and Invariance

Does the comparison theorem 9.III carry over to systems when the natural
(componentwise) ordering of points is introduced in R"? Not surprisingly, the
answer is negative in general. In the next section, we treat those systems for
which such a theorem holds; later we show how to obtain bounds for solutions
of (1) in the general case.

For y,z € R", inequalities are defined componentwise:

y<z<y; <z for i=1,...,n,

y<z<s>y <z for i=1,...,n
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XII. Monotonicity and Quasimonotonicity. The function f(z,2) :
D c R™! — R™ is said to be increasing in y if y < z implies f(z,y) < f(z,2),
and quasimonotone increasing in y if f; is increasing in y; for ¢ # j, more
exactly, if for i =1,...,n,

y <2z yi=2z,(z,y),(z,2) €D implies fi(z,y)< fi(z,2z).

An n x n matrix C = (¢;;) is said to be positive if ¢,; > 0 for all components,
and essentially positive if ¢,; > 0 for ¢ # j. The same terminology is used for
matrices C(z) = (¢;j(z)). In connection with matrix products, vectors y, u,. ..
are always assumed to be column vectors, y = (¥1,...,%5) -

It is easily seen that a linear function f(z,y) = C(z)y is quasimonotone if
and only if C(z) is essentially positive. If D ¢ R™*! is open and convex and f
and Of /0y belong to C(D), then f is quasimonotone increasing if and only if
the Jacobian Of /8y is essentially positive. Without convexity, this is not true
in general.

If the matrix C(z) + Al is positive for some A > 0, then C(z) is obviously
essentially positive. Conversely, if C(z) is essentially positive and if the diagonal
elements of C are bounded below, then C + AI is positive for large A. There is
a similar relation between monotone and quasimonotone functions. Again it is
obvious that f(z,z) is quasimonotone increasing when f(z, z) + Az is increasing
for some A > 0. Conversely, if f is quasimonotone increasing and satisfies a
Lipschitz condition in y, then f(z,y) + Ay is increasing in y for large A. In
short, a smooth function is quasimonotone increasing if it becomes monotone
increasing when a large multiple of the identity is added.

The propositions that follow can be summarized in a general

Principle. The theorems in § 9 for a single equation carry over to systems
if and only if the right-hand side f(z,y) is quasimonotone increasing in y.

We use the notation Pv = v/(z) — f(z, v) for the defect.

Comparison Theorem. Assume that f : D — R™ is quasimonotone in-
creasing and that v, w are differentidble in J = [§,€ +a]. Then

(a) v(&) < w(€), Pv < Pw in J impliesv <w in J.

(b) If f(x,y) satisfies a loeal Lipschitz condition in 'y, then v(£) < w(£),
Pv < Pw in J implies v < w in J; moreover, the index set splits into two
subsets @ and B, such that for

i€a: v; < w; in (E+aq] (11)
JEB: v; = w;in [€,€+6;) and v; <w; in (6;,€+a), (12)
where 6; > 0.

A simple consequence is

(c) M. Hirsch’s Theorem. Assume that £f(y) € C' has an essentially
positive and irreducible Jacobian Of(y)/0y. Then two solutions v, w of y' =

£(y) with v(§) < w(§), v(€) # w(§) satisfy v(z) < w(z) forz>¢.
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Proof. If (a) is false, then there is a first point zo > £ such that v(z) < w(zx)
for z < xp and v;(xp) = w;i(xo) for some index 7. It follows easily that v}(zo) >
wi(zo) (apply the reasoning of 9.I to v; and w;). On the other hand, Pv < Pw
and v < w, v; = w; at T = xp, implies by quasimonotonicity

w; —v; > fi(w) = fi(v)>0 at z =z,

which is a contradiction. Here and below, the argument « or zy is suppressed.
(b) Assume that f satisfies a Lipschitz condition |f(z, w+2)—f(z, w)| < L|z|
(maximum norm) and let p = e*/®, h=¢(p,...,p), € > 0. Then

h’' = 2Lh > f(w + h) — f(w) = P(w +h) > Pw.

Hence, by (a), v < w + h, which gives v < w, since € > 0 is arbitrary.

Last part of (b): It follows from the local Lipschitz condition that for some
L > 0, £(x,2)+ Lz is (componentwise) increasing in z as long as v(t) < z < w(t).
From (b) we get u=w — v > 0, and furthermore,

e L®(el*u) = u' 4+ Lu=f(w)+Pw~f(v)—Pv+L(w-v)
> f(w)+Lw— (f(v)+Lv) >0

ie., each component of e/®u is increasing. This proves the last part. |

The proof of (c) is an exercise. Hints: f is quasimonotone, hence v < w.
Assume S is nonempty, and write Vv = (va,v), ... Then vq < Wa, vg = Wg
implies f3(va,vg) < f3(Wa,vp), and equality is excluded if 0f5(ya,ys)/OYa = 0
is nonzero which is a contradiction.

Sub- and Supersolutions. Maximal and Minimal Solutions. On
the basis of the preceding theorem, sub- and supersolutions for the initial value
problem (6) can be defined by v/ < f(z,v), v(§) < nand w’' > f(z,w),w(£) > n
(or the same with < in case (b)) exactly as in 9.IV.

Furthermore, in the case where f is continuous and quasimonotone increas-
ing, one can construct a maximal solution y* and a minimal solution y. of (6).
For those solutions the propositions

@ v(E)<n, vV <f(z,v)inJ=v<y*in J;

ewi)2nw2f(z,w)inJ=w>y.inJ

hold. The proofs of 9.VI and 9.VIII carry over.

Our program announced in the general “principle” has been carried out now,
except for the “only if” part. The fact that quasimonotonicity is a necessary
prerequisite for the validity of the comparison theorem is proved in Redheffer
and Walter (1975). The theory that has been developed above goes back to
M. Miiller (1926, 1927) and E. Kamke (1932). In the next section we prove
a theorem on differential inequalities for general systems, that also is due to
M. Miiller (1927). 1t is of a different nature inasmuch as it requires an upper
bound and a lower bound simultaneously.
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XIII. M. Miiller’s Theorem for Arbitrary Systems. Let f(z,y) :
D — R™ satisfy a local Lipschitz condition iny. Lety,v,w:J = [§,é+a] - R
be differentiable, v < w in J, v(€) < y(£) < w(£), y' =f(z,y), and

vi < fi(z,z) for all z € R™ such that v(z) < z < w(z), z; = vi(z),
w; < fi(z,2) for all z € R™ such that v(z) <z < w(z), 2; = wi(z),
fori=1,...,n. Then

v<y<w in J

Remark. The differential inequalities, which look quite complicated at first
sight, have a simple geometric meaning. We use the following notation for
intervals in R™:

I=[abl={zcR":a<z<b}, where a,bcR"” and a<b.

The boundary of this interval consists of 2n “faces” I; and I’ defined by z € I,
Zz=a;0rz => (i=1,...,n). In the two-dimensional case I is a rectangle
with sides parallel to the axes, a is the left lower and b the right upper corner
point, I; and I' are the left and right vertical sides, while I, and I? are the
lower and upper horizontal sides.

Using this notation, the differential inequality for v; can be written in the
form v} < fi(z,2) for z € I;(z), where I(z) = [v(z), w(z)]. One may carry the
abbreviation a step further by (i) defining inequalities between a real number s
and aset ACR,

s<A<=s<a forall ac€ A

and (ii) using a familiar notation fi(z,B) = {fi(z,z) : z € B}. Then the
differential inequalities in Miiller’s theorem XIII can be written as

'Ug S fi(m)I(m)i) and w; Z fi(flJ,I(:L')i), I(:L') = [v(m),w(m)] .

Proof. We again use a two-step method. Assume first that v, w satisfy
strict inequalities. If the conclusion is false, there is a maximal zo > a such
that v < y < w in [a,z0) and, e.g., vi(zo) = yi(zo). Hence v} > y| at zo.
On the other hand, z = y(z¢) satisfies v(zo) < z < w(zo), vi(zo) = 2, and
hence vj(zo) < fi(Zo,¥(z0)) = ¥i(zo), which is a contradiction. In the second
step one may assume that f satisfies (for the arguments involved) a Lipschitz
condition |f(z,y) — f(z,2)| < L|y — z|, where | - | is the maximum norm. Then
the case of weak inequalities is reduced to the case treated above by considering
we = w+¢eh, v = v —¢h, where h = (p,..., p), p = e2L2. n
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Invariant Intervals. Let us consider the important special case where the
functions v, w are constant. Then the assumptions in Miiller’s theorem are

y(€) €I, fi(z,I;) >0 and fi(z,I) <0, where I=[v,w]

(¢=1,...,n), and the conclusion is y(z) € I for z € J.

These inequalities signify that on the boundary of I the vector field f points
into I. For example, in the case n = 2 we have fi > 0 on the left side and
f1 <0 on the right side, and similarly f» > 0 on the lower side and < 0 on the
upper side. When this is true, then y(¢) € I implies y(z) € I for z > £. This
fact is expressed by saying that I is an invariant interval (invariant rectangle
in the case n = 2). Thus a theorem on invariant intervals is a very special case
of Miiller’s theorem.

XIV. The Case n = 2. Consider problem (1) for y = (41, y2), i.e.,

y;. = fl(EJylayZ)a yé = f2($1y11y2)1 yl(&) =T, yZ(E) =172, (13)

and assume for simplicity that f(z,y) = (f1, f2) is locally Lipschitz continuous
in y. We discuss several monotonicity assumptions with respect to the theorems
in the two preceding sections. The behavior of f; in the variable y2 and of f;
in the variable ¥; is crucial. Let y be the (unique) solution of (13).

(a) Case (I, I). If f1(t,y1,y2) is increasing in y, and fo(t,y1,y2) is increas-
ing in 41, then f is quasimonotone increasing. In this case,

V] < fi(z,v1,v2), vy < fo(z,v1,v2) and v1(€) <m, v2(€) < me
implies v; < y; and v2 < yp in J.

(b) Case (D, D). Let f; be decreasing in y, and f, be decreasing in y;.
Then f is not quasimonotone, but the equivalent system for §; = —y; and y2,

g;. = —fl(za "!,71,!/2), y; = fZ(za "1,71,!/2),

is quasimonotone. Therefore, the statement given in (a) holds for this system.
In terms of the original system it reads as follows:

V] 2 fi(z,vn,v2), vp < falz,v,v2), wi(€) 2m, ve(f) <2

implies v; > 4 and vz < ¥y, in J. In such a case v = (v;,vs) is sometimes called
an upper—lower solution.

(c) Case (D, I). If fi is decreasing in y, and f; is increasing in ¥, it is
impossible to enforce quasimonotonicity by a simple transformation. We employ
Miiller'’s theorem XIII. The conditions for v, w are v(§) < n < w(f), v<w
and

'Ui < f1($,111,w2), 'wi 2 fl(za'wla'vz)a
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Y2
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S1:ye=f(n)=-nyp —s)(n-1) FitzHugh-Nagumo equations

Sy ya=by,b=0/7>0

'Ué < f2(mavlsv2)s wé 2 f2(m1 ’(1)1,’(1)2),
and the conclusion isv <y < w.
Example. The FitzHugh-Nagumo Equations. These equations rep-

resent a simple model for the mechanism underlying signal transmission in neu-
rons. Usually, these equations are given in the form

v=0v—yu, v =Ff(v)-u

where o and vy are positive constants and f(v) = —v(v—&)(v—1) with0 < k < 1
(typically). Here u(t) represents the density of a chemical substance and v(t)
an electric potential depending on time ¢. For further information, see Jones
and Sleeman (1983). With the notation v = y;, u = y, we have

(d) 1= flvye) =)=y, 5= Ff2(y1,30) =0u —7y.

Since fy is decreasing in y, and f, increasing in y;, the conditions from (c) for
a subfunction v = (v;,v;) and a superfunction w = (w;, wy) are

'U;’[ S f(vl) = Wy, ’(Di Z f(wl) = V2,
vy L0V — Y2, Wy 2 oWy — Yws.

In the figure the curves S; : fy =0 and S5 : f» = 0 are drawn, and the side of
the curve where the component is positive or negative is indicated. A rectangle
[4,C] (A < C) with corners 4, B, C, D is invariant if v(t) = A and w(t) =C
satisfy the preceding inequalities; i.e. if

A is below S;, C is above S,,
D is below 51, B is above Sy;
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for example, on the side AB we must have fo > 0, which is guaranteed if A is
below S2.

The straight line S, is given by y2 = by1, b = o/y. If we choose A and
C on S,, ie, A = (o,ba), C = (B8,b8) with & < 0 < 3, then B = (8,ba),
D = (o, bB), and the two remaining conditions regarding S, read

fl@) 28, f(B) <ba

If —a = B is a large positive number, then these inequalities are satisfied:

There are arbitrarily large invariant rectangles, which implies that all solu-
tions of the FitzHugh-Nagumo equations exist for allt > 0.

(e) Ezercise. Find sub- and superfunctions depending on # (shrinking rect-
angles). Assume that A and C, that is, v(t) and w(t), are on the line

Y2 =ay;, where a=b+e/y (¢>0)

(this line is slightly steeper than S;). Use the ansatz v(t) = (1,a)ae~5(t—9),
w(t) = (1,a)Be %9 (e < 0 < B, § > 0) and give conditions on f such that
v, w satisfy the inequalities in (d) for t < c.

(f) Show that there exist arbitrarily large invariant rectangles if the function
f in the FitzHugh-Nagumo system satisfies f(s)/s — —oo as s — *oo0.

XV. Invariant Sets in R*. Tangent Condition. A set M C R" is
said to be (positively) invariant or flow-invariant with respect to the system
y' = f(z,y) if for any solution y, y(a) € M implies y(z) € M for z > a (as
long as the solution exists). The basic hypothesis for invariance is a tangent
condition that roughly states that at a boundary point z € OM the vector
f(z,z) is either tangent to M or points into the interior of M. The problem
is to find a formulation that applies to arbitrary sets M and does not use any-
smoothness of the boundary of M. The tangent condition is given in two forms.
It is assumed that f is defined in G D J x M, J = [a, b]:

hli1(1)1+ %dist (z + hf(z,2),M)=0 for z€M, z€l/, (Tq)

(n(z),f(z,2)) <0 for z€J, z€0OM, where

n(z) is the outer normal to M at z. ()
Here, dist (z, M) denotes the distance from 2z to M, and (y,2) is the familiar
inner product y12; + - + Ynzn. The vector n(z) # 0 is said to be an outer
normal to M at z € OM if the open ball B with center at z + n(z) and radius
|n(z)| has no point in common with M. Geometrically speaking, the ball B
touches M at z, 2 € OM N B. The index d or i in the tangent condition
indicates that the definition employs the distance or the inner product in R”,
respectively. Naturally, (T4) is true for z € int M. First we give without proof
some relations between these two conditions.
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Zp
z + hf
Z
Condition (T4) Condition (1)

Tangent conditions

(a) (Ty) implies (T;).

(b) If f is continuous in J x M, then (T;) implies (Ta), and (T4) even
holds uniformly in compact subsets of J x M.

XVI. Invariance Theorem (with Uniqueness Condition). The closed
set M C R™ is flow-invariant with respect to the differential equation y' =
f(z,y) if f satisfies the tangent condition (T;) or (T4) and a condition of Lip-
schitz type

(v1—-y2.f(,y1) - f(z,y2)) < Lly: - y|2 (12)

Proof. Let y be a solution of y' = f(z,y), let y(a) € M and p(z) =
dist (y(z), M). Assume that y(s) ¢ M, i.e., p(s) > 0 for some s > a, and
let z € M be such that p(s) = |y(s) — z|- The function o(z) = |y(z) — 2|
satisfies p(z) < o(z), p(s) = o(s), and hence D p(s) < o'(s) (D*p is a Dini
derivative). Note that o is differentiable near s and

S0 = 00" = {y(z) ~2,¥'(@)) = (¥(a) ~ 5 £(z,¥(2))

Now, n(z) = y(s)—z is an outer normal to M at z, and (T;) implies (n(z), f(s, z))
< 0. Using this inequality, we obtain for ¢t = s,

oo’ = (n(z),£(s,y(s)) < (n(z),f(s,y) — £(s,2)) < Lp°.

Hence D*p(s) < Lp(s). Since s was arbitrary, we have D"p < Lp whenever
p > 0. There exists an interval [b, c] such that p(b) = 0 and p > 0 in (b,c]. It
follows from Theorem 9.VIII that p = 0 in [b, ], which is a contradiction. W

In conclusion we state without proof another
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Invariance Theorem (Existence). Let M C R™ be closed, f(z,y) : [£,£+
a]x M — R" bounded and continuous, and assume that a tangent condition (T;)
or (Ty) holds. Then, for anynn € M, the initial value problem (6) has a solution
Yy such thaty(z) e M for{ <z <€+ a.

In particular, if M is compact and if £ is continuous in [£,00) X M, then
there ezists a global solution satisfying y(z) € M for allz > &.

Remarks. 1. Nagumo (1942) formulated condition (T4) and proved the last
theorem. The invariance problem was revitalized in the late sixties. Condition
(T;) goes back to Bony (1969), who proved Theorem XVI under the assumption
that £ = f(y) is locally Lipschitz continuous; Brezis (1970) showed the same
under condition (Tg). The propositions XV.(a) and (b) are due to Redheffer
(1972) and Crandall (1972), respectively. The paper by Hartman (1972) and
other papers cited here give the impression that the authors were not aware
of Nagumo’s theorem. Obviously, invariance follows from this theorem if f is
continuous and if the assumptions regarding f guarantee uniqueness.

2. The invariance theorem X VI and its proof carry over to differential equa-
tions in a Hilbert space H (where f and the solution have values in H and the
inner product in H appears in (12)).

XVII. An Example from Ecology: Competing Species. We con-
sider nonnegative solutions (u(t), v(t)) of the autonomous system

v =uB-u—2v), v =v(4-3u-0). (13)

In the biological model, u(t) and v(t) are the numbers of individuals in two
competing populations that feed on the same limited food source, and £ is time.
If v is absent, u(t) is governed by the logistic equation v’ = u(3—u) with growth
rate 3 —u, which diminishes to 3 —u — 2v in the presence of v. The same applies
to v.

We discuss the global behavior of solutions as ¢ — oo using the phase plane.
Since both u and v are nonnegative, only the first quadrant @ = [0, 00)? in the
uv-plane is considered.

Writing the system in the form (v/,v') = F(u,v) = (f(u,v), g(u,v)), we find
that f = 0 on the line BD and on the v-axis, while g = 0 on the line AC and
the u-axis; in the figure, the sign of f or g on the two sides of the zero line is
indicated. This figure shows that there are

four stationary points, (0,0), B=(3,0), P=(1,1), C=(0,4)
and
four regions, By — E4, where the signs of u’ and »' do not change;

the arrows show the direction of F' on the boundary of these regions. First

observation: the regions E, and Ej4 are positively invariant, and so is Q.
Consider a solution (u,v) starting (say, at ¢ = 0) in region E5. Both com-

ponents u and v decrease as ¢ increases. The solution either stays in Ej3 for all
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t > 0 or enters one of Ey (through BP) or E, (through PC) and remains there.
Similarly, a solution starting in E) stays there or enters Fy or E4, remaining
there. Because u(t) and v(t) are eventually monotone in all cases, the limit

tlirgo(u(t),v(t)) = (Yoo, Voo) = P € Q

exists. According to XI.(g), F(Px) = 0; i.e., every solution 7 0 converges to
B, C, or P ast — oo. In the first case, the v-population dies out; in the second
case it is the u-population which becomes extinct. In the third case the solution
converges to a state of coexistence P. In each of E; and Ej there is a unique
solution (modulo time shift, see XI.(b), (c)) converging to P. The corresponding
orbits combine to form a curve from 0 through P to infinity, which divides the
first quadrant in two regions. A solution starting (at any time) in the upper
region converges to C, and one starting in the lower region converges to B.
Hence this curve, also called a separatriz, categorizes the asymptotic behavior
of all solutions as t — 0o. A proof (not simple) is indicated in (d) below.

Ezercise. (a) Show that the regions F; and F3 and @ are negatively invariant
and that every solution starting in E; tends to 0 as t — —oo0.

(b) The diagonal © = v cuts the first quadrant into a lower part @; and an
upper part @,. Show that the regions (E) U E3) N Q,, and (B2 U E3) N Q; are
positively invariant and that a solution starting in one of these regions does not
converge to P as t — oo.

(c) Let F be the set of points between the straight lines v = v and v = 2u—2.
Show that for ¢ = 1 and ¢ = 3, the sets E] = E; N F are negatively invariant
and that a solution starting in F; \ E} does not converge to P.

(d) Show that there exists a unique solution (u*(t), v*(t)) (modulo time shift)
starting in E4 and converging to P (same for E}).
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Hint: Make P the origin of coordinates (@, %), i.e., u = 1+@, v = 1+%. Then
(13) becomes (@', 7') = —((1+)(&+29), (1+7)(3a+7)) = (f, 7). Consider the
differential equation for the trajectories in explicit form ¥ = (%) (see equation
(2c) in § 3), which reads

dv

_(+9)EE+9) _
du

g .
I R

The solutions ¥, with initial value ¥,(1/n) = 2/n converge monotonically to a
solution 7*(%) that describes the trajectory (lying in E3) of a solution (u*,v*)
of (13) converging to P. There is only one such solution in E}, since k(%,) is
decreasing in ¥ near 0 (= P), which implies that the difference of two solutions
is increasing as @ — 0+.

Supplement II: Differential Equations in the Sense of
Carathéodory

Solutions in the Sense of Carathéodory. Some facts from the theory of
Lebesgue measure and Lebesgue integral for real functions are required in the
following. We denote by L(J) the class of functions that are measurable and
integrable over J and by AC(J) the class of absolutely continuous functions on
J. In this section, we consider a generalization of the notion of a solution to a
differential equation, introduced by Carathéodory (1918). A function y(z) is a
solution of the differential equation (1) in the sense of Carathéodory (abbrevi-
ated, a C-solution) if y is absolutely continuous in the interval J and satisfies
the differential equation (1) almost everywhere in J. If y also satisfies the initial
conditions, then it is called a C-solution of the initial value problem (6). The
right-hand side f(z,y) : D — R™ is required to satisfy in D a

Carathéodory Condition: f(z,y) is continuous as a function of y for
fized T and measurable as a function of x for fized y.

XVIII. Existence and Uniqueness Theorem. LetJ = [¢,£+a] and
S = J x R™ and assume that the function f : S — R™ satisfies a Carathéodory
condition in S.

(2) If there ezists h € L(J) with |f(z,y)| < h(z) in S, then the initial value
problem (6) has at least one C-solution in J.

(b) If £ satisfies f(z,y) € L(J) for fized y and a generalized Lipschitz con-
dition

[f(z,y) — £(z, 9N < Uz)ly —§| in S, where l(z) € L(J), (14)

then there ezists a unique C-solution of (6) in J.

Sketch of the Proof. Once again the proofs from §6 and §7 carry over. First
one needs the following lemma.
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XIX. Lemma. Iff satisfies the hypotheses of XVIII and if u(z) € C(J),
then f(z,u(z)) € L(J).

It is sufficient to show that f(z, u(z)) is measurable. This is clearly the case
if u is constant, and hence also if u is a step function (constant on intervals).
If u is continuous and (ug) is a sequence of step functions such that up — u
pointwise, then f(z, ux) — f(z,u). This implies the measurability of f(z, u(z)).

|

The fundamental theorem of calculus for the Lebesgue integral states that
VL), @) =9O) + [ WO $€ 40, ¢ =y e

We can now proceed along the lines of the earlier proofs, since solving the
initial value problem is equivalent to finding a continuous solution of the integral
equation (7). In the case (b) one can show that the operator T is a contraction
in C(J) with Lipschitz constant 3. In the proof we use the norm

T
el = max fa(a) 22 with  L(z) = / I(2) dt.
3

In the case (a), one can use the approximating functions z, introduced in
§7. Equicontinuity of the family (z,) follows from the inequality

|Za(Z1) — Za(zo)| < /zl h(t)dt = H(z,) — H(zo) (z0 < 1),

where H(z) = / h(t)dt is (uniformly) continuous in J.
£

Thus we easily obtain the following theorem.

XX. Existence and Uniqueness Theorem. Let D C R™*! be open
and suppose that the assumptions of XVIII hold on every set of the form S =
J x K contained in D, where J C R is a compact interval and K C R™ is a
closed ball. Then the initial value problem (5) has a solution for any (§,m) € D.
Every solution can be extended to the left and right to the boundary of D. In
the case (b), the solution is unique.

The next two theorems have important applications. Note that all functions
are real-valued.

XXI. Theorem on Differential Inequalities. Let the function f(z,y) :
DcR?2SR satisfy a local generalized Lipschitz condition in y, i.e., on every
compact rectangle R = J; x Jy C D (Jz, Jy compact intervals), let there exist
a function | € L(J;) such that

|f(z,9) — f(@ D) < Uz)ly-§| for z€ey y, 7€y (15)
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Suppose that the functions ¢, Y € AC(J), J = [£,€ + a), satisfy the conditions
(a) (&) < ¥(8),
(b) P¢ < Py a.e. in J with Pp = ¢' — f(z, ¢).
Then either ¢ < ¢ in J, or there ezists ¢ € [€,£ + a] such that ¢ =9 in [€, (]
and ¢ <Y in (c, € + al.
A corresponding statement holds for the interval J_ = [€ — a,£] with the
assumption (b') P¢ > Py instead of (b).

This extends Theorem 9.IX to differential equations in the sense of Carathéo-
dory. The proof from 9.IX carries over. One simply replaces Lz with the func-
tion L(z) = [ l(z) dz. Theorem XXI provides a basis for introducing upper and
lower solutions exactly as in 9.IX.

For general f, an analogue of Theorem 9.III with strict inequality does not
hold for C-solutions. It fails even for classical solutions if the strict inequality
in (b) is violated at just one point; take, e.g., y' = \/m, ¢=1z%19Y=0in
|z| < 1/10. Nevertheless, we have

XXII. Maximal and Minimal Solutions. Theorem. LetJ = [, £+
a) and 8§ = J x R. Assume that f : S — R satisfies Carathéodory’s condition
and |f(z,y)| < h(z) € L(J) in S. Then the initial value problem y' = f(z,y),
y(§) = n has a mazimal solution y* and a minimal solution y, ezisting in J,

and for ¢,9 € AC(J),

¢ < flz,¢9) ae in J, ¢)<n implies ¢<y* in J,
¢ 2 flz, ) ae in J, Y(E)>n implies ¢ >y* in J

In particular, y. <y <y* in J for every solution y.

Proof. Obviously, |y(z) — 7| < f: h(t)dt =: H(z) for every solution y(z).
Let R be the rectangle R = J x [p — C,n + C], where C = 3H(£ + a) + 2, and
consider for 0 < @ < 1 the “modulus of continuity”

ba(z) = sup {|f(z,9)] - f(2,2) : (z,9),(z,2) €R, ly— 2| < a}.

It satisfies 0 < 6o(z) < 2h(z) and and 6,(z) — 0 as @ — 0+ (pointwise),
because f is uniformly continuous in y in the compact interval [n — C, 7 + CJ.
Let w, be a solution of

wy, = f(2,wa) +6a(z) In J, walf) =n+a. (*)

The estimates given above show that 7 — C +2 < wo(z) < n+C —11in J.
We show first that ¢ < w, in J. Let v = wo — ¢. Then |u(z)| < o implies
(z,wa(z)), (z,¢(z)) € R and

u' =wl, — ¢’ 2 f(z,wa) — f(,9) + 6alz) = —ba(z) + 64(z) = 0.

It follows easily that v > 0, i.e., ¢ < wq in J.
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Since |w.(z)| < 3h(z), the family {w,} is equicontinuous. Let (o) be a
null sequence and (f,) a subsequence such that the sequence (wg,) converges
uniformly in J; cf. Theorem 7.IV. I y*(z) = limwg, (), then clearly ¢ < y*
in J. Now consider the integral equation for w, equivalent to (x) and take
o = fB,. For n — 0o, we obtain an integral equation for y* which shows that y*
is a solution of the initial value problem for 3’ = f(z,y). Here we have used that
f; 8., (t) dt — 0. This follows from Lebesgue’s dominated convergence theorem
since lim g, (t) = 0 (pointwise). |

Remarks. 1. It is now a matter of routine to show that under the assump-
tions of Theorem XX, case n = 1, there exists a maximal solution y* and a
minimal solution y. and that both solutions approach the boundary of D to the
left and to the right.

2. Theorem XXII extends to systems of differential equations which are
quasimonotone in y. However, the above proof needs modification. If the in-
equality ¢ < w, does not hold in J, then there is a first point ¢ > £ such
that ¢ < w,, for z < ¢ and ¢;(c) = wai(c). One considers v = wo; — ¢; in an
interval [c — €, c], where 0 < u < ¢, and obtains %' > 0 in this interval using
quasimonotonicity. This implies u(c) > 0, a contradiction.

3. Ezercise. Let § =n =0, f(z,y) =y/zfor0<z <1, zlogz <y <0
and f(z,y) =0 for y 2 0, f(z,y) = logz for y < zlogz. Find the maximal
and minimal solution and a negative function v satisfying ¢’ = f(z,%) + 1,
$(0) =0.

XXIII. Solution Estimates. (a) If y(z) is absolutely continuous in J,
then so is ¢(z) = |y(z)|, and .
|¢'(z)] < |ly'(z)] ae in J

The absolute continuity follows from the inequality

|6(z2) — é(z1)] < ly(z2) — y(z1)]
obtained using (5.2). Dividing both sides now by z5 — z; > 0 and taking the
limit as zo — z1+ or z, — z,—, leads to the inequality |¢| < |y’]. |

Theorem. Lety be a C-solution of (1) in the interval J = [€,€ + a], and
let the inequality

|f(z, y)| < w(z,lyl) (16)

hold, where w(z,r) is defined in J x [0,00) and satisfies a generalized local
Lipschitz condition in r. Then any function p € AC(J) with the properties

p > w(z,p) ae in J,  p(€) > ly(€),

is an upper bound for the solution,

ly(z)| < p(z) in J (17)
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The estimate (17) holds in an interval J— = [£ — a,£] to the left of € if
p' < —w(z,p) ae ind_, p(£) 2 |y(€)l.
Proof. Let ¢(z) = |y(z)|. From proposition (a) and (16), it follows that
¢’ < f(z,y)| < wiz,9).
The conclusion now follows from Theorem XXII with f replaced by w. a

Ezercise. Show that, with the Euclidean norm, the estimate (17) also holds
under the weaker assumption (y,(f(z,y)) < |ylew(z,|yle). Here (-,-) is the
scalar product in R™.

XXIV. Exercise. Separated Variables. Show that the Theorems
1.VII-VIII hold for the differential equation with separated variables
v = f(z)g(y) under the assumption f € L(J;), g € C(Jy)

and that the representation formula (1.8) remains valid.

XXV. Exercise. Solve the initial value problem (n = 3)

Y2V3 0
y=|-ny| with y0)=|1
2 0

by the method of successive approximation. What is the kth approximation if
yo(z) =y(0)?

§ 11. Initial Value Problems for Equations
of Higher Order

I. Transformation to an Equivalent First Order System. Consider
the nth order scalar differential equation in explicit form

y™ = f(z,y,9,..., 4" D) (n>1). (1)

A function y(z) is a solution of this equation in an interval J if it is n-times
differentiable in J and satisfies equation (1) identically for z € J. Equation (1)
can be transformed into a system of n first order differential equations for n
functions y1(z), ..., ¥a(2z):

V1=

Y2 =13
(2)

Yn—1="Yn

v, = (291,92, -, Yn)-
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Equation (1) and the system of equations (2) are equivalent in the following
sense: If y(z) is a solution of (1), then the vector function y = (y1,%2,...,¥n) :=
(v,9',-..,¥™V) is a solution of (2). Conversely, if y is a (differentiable) so-
lution of (2) and one sets y;1(z) := y(z), then y(z) is n-times differentiable,
y2(z) = ¢'(x), . - ., yn(z) = y®~V(z), and equation (1) holds.

In a similar manner, systems of nth order equations can be transformed into
systems of first order equations by introducing new functions for the lower order
derivatives. For example, the equation of motion of a point mass of mass 1 in
three-dimensional space in the presence of a force field k(¢,x) is given by

¥ =k(t,x) for x=x(t),
or, written in expanded form with x = (z,y, 2), k = (f, 9, h),

' i = f(t,z,y,2)
§=g(t z,y,2)
i=h(t,z,y,2).

This system is equivalent to the following system of six first order differential
equations for six unknown functions z, y, z, u, v, w.

t=u, 4=f(tz,92)
y=v, v=g(tz,y,2)
z=w, w=h(tzy,2).

We return to equation (1). An initial value problem for the equivalent system
(2) prescribes the values of the functions y,, . ..,y at a point £. Corresponding
initial conditions for (1) are given by

y(€) =m0, ¥'(€) =m1, -,y () = -1 (3)
For example, the initial value problem for a second order differential equation
reads

y' = flz,9.¥), y€=m, ¥ =m.

Because of the equivalence of the two initial value problems, all of the the-
orems derived earlier for the system (2) can be applied to (1), (3). Here, the
right-hand side of (2), f = (fi,..., fr), takes the special form

fi(zayly"'ayn)=yi+1 (7"_‘1,'1”_1)
f‘n(xaylv" ,y‘n.)= f(xayla' . °ay‘n.)'

Thus f is continuous if f is continuous, holomorphic if f is holomorphic, and
satisfies a Lipschitz condition if f satisfies a Lipschtiz condition

|f(z,y) = f(z,9)| < Lly - §1. (4)

In particular, if f(z,¥1,...,Y») is continuous in a domain D C R™*?! and if the
partial derivatives 8f/8y; are continuous in D, then both f and f satisfy a local
Lipschitz condition in y. We summarize.
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II. Peano Existence Theorem. Let f(z,y) be continuous in a domain
D c R™, and let (€,7m0,...,Mn-1) € D. Then the initial value problem (1),
(3) has at least one solution. Every solution can be extended up to the boundary
of D.

III. Uniqueness Theorem. Let f satisfy the hypotheses of Theorem II.
If in addition, f satisfies a local Lipschitz condition (4), then there exists ezactly
one solution. This is the case, in particular, if 3f /8y € C(D).

IV. Complex Existence Theorem. Let f(z,w1,...,w,) be a function
of n+1 complez variables z, wa, ..., Wn. If f is defined and holomorphic in D C
C™*!, then there exists ezactly one function w(z), defined and holomorphic in a
neighborhood of the point (20,0, (1, .- ,Cn-1) € D, that satisfies the differential
equation

w™ = f(z,w,v,...,w"D)
and the initial conditions

w(zo) = Co, w'(20) =1y -+, 'w("—l)(zo) = (n-1-

The solution can be expanded in a power series

(> o)

w(z) = Z ax(z — z0)*.

k=0

For ezample, the ansatz y(z) = ap + a1z + asxz? + - - - in the initial value
problem

¥ +y, y(0)=mno, y(O0)=m ()
leads to the recursion formulas

a=m, a=m, k(k—Dax+ar2=0 (k=2,3,...),
from which it is easy to see that

2 It

=1 m=0 = y=1l-—+-——+4..-=cosz,

20 4l
3 45
=0 m=1 = y=x—§!—+€!-—+---=sin:c,

and hence the solution of problem (x) is y = 7o cosz + 7 sinz.

In the next three parts we consider some differential equations of second
order that either can be integrated directly or reduced to simpler differential
equations.
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V. ¥ = f(z,y')
This equation is equivalent to a first order differential equation for 2(z) =
/
¥'(z),

2 = f(z, 2).

If the initial condition is y(€) = 79, y'(€£) = 71, one first looks for the solution z
with z(£) = n1. Then y is found by quadrature:

y(z) =m0 + /E oy

VL ¥ = f(y,v)

Suppose y(z) is a solution and z(y) its inverse. We introduce the function
p(y) defined by

p(y) =¥ (z(v)).

Note that dz(y)/dy = 1/p(y). The expression for the derivative of p, dp/dy =
y"(z(y))/p(y), leads to the first order differential equation

d
-iy’ = :—,f(y,p) for p=p(y).

Suppose p(y) is a solution of this equation. Then we may calculate

1
2(y) = / o3

The solution y(z) is the inverse of this function.

Ezample.

" 2

y' =y”-siny, y(0)=0, y(0)=1
The equation for p(y) is
dp/dy =p-siny with p(0)=%'(0) =1

Therefore

y
p(y) — el—cosy = :r:(y) =/ ecoss—l ds.
0
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VIL v’ =f@)

This is a special case of VI. Suppose f is continuous, y(z) is a solution, and
F(y) = [ f(y)dy is a primitive of f(y).
Multiplying the differential equation by 2y’, we obtain

WY = Wy = fy) = 2%F(y(x)),

which implies
y'> =2F(y) +C.

Solving for 3’ gives a differential equation

¥ =£v/2F(y) +C,

which does not depend explicitly on the independent variable.

If 71 # 0, then the value of the constant C and the sign are uniquely de-
termined by the initial condition y(0) = 7, ¥'(0) = m, and the differential
equation has a unique solution y(z) with y(0) = 7 (Theorem 1.VII). In the
case where 7; = 0, the situation is somewhat more complicated, and there may
be more than one solution.

In the remainder of this section, we discuss some examples from physics.

VIII. The Catenary. A flexible chain or cable with no stiffness, sus-
pended from two points, hangs under the influence of gravity in a shape called
a catenary (from Latin catena, chain). Let (a,y.), (b,¥), @ < b, be the two
suspension points in the zy-plane, p the density (mass per unit length) of the
chain, which is assumed to be constant, and g the constant of gravitational
acceleration. We choose a reference frame such that the gravitational force op-
erates in the direction of the negative y-axis. In order to determine the function
y(z) that describes the shape of the curve, we conduct a thought experiment:
We cut the chain at a point (z,y(z)) and remove and replace the right-hand
part by a force k, = (H,, V) in such a way that the left-hand part of the chain
remains at rest. Then

k; = (HmHy) with yl(m) = %
z

(this relation reflects the assumption that the chain has no stiffness). If, on
the other hand, the left-hand part is removed and the right retained, then an
opposite force —k is required.

Now consider the segment of the chain between o and 8. It is kept at rest
by forces —ko = —(Hq, Vo) on the left and kg = (Hp, Vp) on the right. Since
the system is at rest, the sum of the forces is zero. Separating into horizontal
and vertical components, one is led to a pair of equations

Hg - Hy =0 = H;= const. = H,

Vp—Va—gffp\/1+y’2d:L'=0.
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The integral in the second equation measures the length L of the curve segment
(cf. A.I), and the term pgL gives the downward pull due to gravity. The second
equation can be rewritten in the form

8
Hy" — pg 1+y'2> dz =0,
IR

B
since V-V, = / V'(z)dz and V = Hy'. Now we use a well-known argument:

Since a,  can be chosen arbitrarily, the integrand must vanish, and it follows
that

v/ =c\/1+y? with c= %g_ >0 Catenary equation.

This equation belongs to the type studied in V. From the differential equation
2 = ¢V1+ 22 for z = y’ one easily obtains arcsinhz = c(z + A) and hence
z =y’ =sinhc¢(z + A). The general solution is then given by

1
y=B+ p coshe(z + A) (A, B arbitrary).

Remark. The equation of the catenary (and the above derivation) remains
valid if the density p is variable.

The Boundary Value Problem. Suppose the distance b — a and y, — ¥y,
are given, together with the length of the cable L; naturally, we require that

L?2> (b—a)? + (v — vo)% (5)

Without loss of generality, let A =0, i.e., a reference frame is chosen such that
the minimum of y is at £ = 0. Then we have

L=/ab\/1+y'2 = %/aby"dz= %[y'(b) - y(a)]

=%[Sinhcb—sinhca] = %sinh c(b2—a.) - cosh c(a.2+ b)
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and

"2 b—
Yp— Yo = %[cosh cb — cosh ca] = p sinh A 5 a). sinh c(a;- b) . )

From this pair of equations, it follows that

L= = (e = 2sion 02 (8)

The value of ¢ can be determined from this equation. The equation is first
written in the form of a fixed point equation. £ = ¢(£) can then be solved by
iteration. Setting £ = ¢/2 one obtains £ = (sinh(b — a)£)/L’, or, in terms of the
inverse function,

= ;= sinh™(L'€). (9)

If ¢(€) denotes the right-hand side of (9), then L' > b—a implies that ¢/(0) > 1.
Since arcsinh (t) is concave for t > 0 and grows like In(t) for large ¢, there exists
exactly one positive fixed point £&. The reader should verify using a sketch that
the sequence (z,) obtained by iteration z,4+1 = ¢(z,) converges to £ for every
starting value zo > 0. In the special case y, = y», we have a = —b < 0 and
L = L'. In the general case, once ¢ has been determined, a can be determined
from (7), (8), and a+ b= (b—a) + 2a:

yb—ya_b_a

1 .
a= ~c-a.rcsmh 7 5

(10)

Historical Remark. In the second discussion in the Discorsi (1638), Galileo
expressed the opinion that the catenary was a parabola. The true form was
found, independently, in 1691 by Leibniz, Johann Bernoulli, and Huygens. Leib-
niz originated the name catenary.

Ezample. Let b—a = 200, y»—Yy, = 100, L = 240, hence L’ = 20/144 - 25 =
218.1742. By iteration in (9), one obtains ¢ = 2¢ = 0.007287 and a = —39.114.
Thus the chain is described by the function

y(z) = 137.237 - cosh(0.007287z) + B,

its sag S = min (y,, y») — miny(z) is given by

S =y(a) —y(0) = -i—(cosh ca — 1) = 5.612.

IX. Catenary Problems. (a) For fixed b—a and y,—y,, the horizontal
component of the force H is a function of L. Show: H = H(L) is monotone
decreasing and tends to co as L — +/(b—a)2 + (y» — ¥a)? and toward O as
L — o0.

(b) Let b — a = 200, y, = y», L = 240. How large is the sag?

(c) Let b—a = 200, y, =y, S = 20. How large is L?
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(d) Let y, = y» and span = sag = 1 m. How long is the chain?

(e) Prove: If y(z) = (1/c) coshez describes a catenary and z(z) = o + Bz?
is a parabola with y(0) = 2(0), y(b) = 2(b), then y < z in (0,b).

(f) (Galileo Vindicated?) For which density function p = p(z) is the parabola
y = a + fz? a solution of the catenary equation? Interpret this result in terms
of (e).

X. Nonlinear Oscillations. We consider the differential equation
£+ h(z)=0 for z==z(t). (11)

Here h is locally Lipschitz continuous in R and satisfies the conditions h(0) =
and z - h(z) > 0 for z # 0. This equation is of type VII.

(a) If z(t) is a solution of (11), then the functions z(t + c) and z(—t) are
also solutions.

By VII, the function

E(z,z) = %.’iz2 +H(z) with H(z) = /m h(s)ds (12)
0

is constant for every solution of (11), and for the initial conditions z(0) = zo,
£(0) = vo, E(z,z) = E(z0,v) =: a. For vg > 0, we have £ = /2(a — H(z)),
and using 1.V, we obtain the solution in the form

. /m(t) \/Q_H—(s

In applications to mechanics, z(t) describes the motion of a point mass
of mass 1, z = 0 corresponds to the equilibrium state, and —h(z) gives the
magnitude of a “restoring force” (its sign is opposite to the displacement z,
whence its na.me) The function E in (12) is the total energy, the sum of the
kinetic energy 5 112 and the potential energy H(z) (the work done in moving
the mass from .7: to = + dz is h(z)dz). The equation E(z(t), £(t)) = const has
the following interpretation: In the oscillations of a frictionless system, like the
one under consideration here, there is a continual exchange between kinetic and
potential energy, while the total energy remains constant.

Equation (11) can be written as an autonomous system

t=y, y=-—h(z) (1r’)

In 3.V, we described how to construct a phase portrait, from which the qualita-
tive behavior of the solutions of such systems can be read. The trajectories in
the zy-plane are level sets of E(z,y). Clearly, H(z) > 0 for z # 0. Therefore,
0 = E(0,0) < E(z,y) for (z,y) # 0.

with a = E(zo,v) > 0. (13)

Theorem. Suppose H(z) — o0 as z — *co. Then every solution to the
differential equation (11) is periodic. A solution z(t) takes on its extreme values
when £(t) = 0; the extreme values of £(t) occur when z(t) = 0.
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Proof. By (11'), z(t) is strongly monotone increasing for y > 0 and decreas-
ing for y < 0; a similar statement holds for y(¢). This implies the statement
about the extreme values. The remaining conclusions follow from A.VIII-IX.
We indicate a direct proof.

The equation E(z,y) = a > 0 describes a closed Jordan curve K, that
surrounds the origin and is symmetric to the z-axis and that is represented by

y==+2(a—~ H(z)) for r <z<my,

where 11 < 0 < 79 and H(r;) = H(r;) = a. These values are uniquely de-
termined because of the strong monotonicity of H in the intervals (—oo,0] and
[0, 00).

If (z(t),y(t)) is a solution of (11’) with the initial values z(0) = zo > 0,
y{0) = yo = 0, then since the curve K, is bounded, the solution exists in R;
cf. 10.XI.(c). Using an argument similar to the one used for the predator—prey
model in 3.VI, one shows that the solution runs over the entire curve K, and
is periodic. (Initially § < 0; y(¢) is strongly monotone decreasing, as long as
z(t) > 0; from y < —¢ it follows that £ < —e, hence there is a t; > 0 with
z(t,) = 0; etc.) |

We discuss some examples.
(b) The Harmonic Oscillator. In the linear case h(z) = w?z with w > 0, the
equation is

E+wiz=0 harmonic oscillator equation.

The general solution is z(t) = rsinw(t+c) (r > 0), and the total energy is given
by 2E(z,y) = y? + w?z?. Thus the trajectories are ellipses 3 + w?z? = 2a.
The (minimal) period T’ = 27 /w is the same for all solutions. The number v =
1/T = w/(2m) is called the frequency (the number of oscillations per second), w
the circular frequency, and r the amplitude of the oscillation.

In mathematical models of elastic objects, a linear relationship between dis-
placement and tension is known as Hooke’s law. The classical example is a mass
hanging on a spiral spring; here k = w? is the spring constant.

(c) Mass on a Rubber Band. Suppose a rubber band is fixed at the upper end
A and hangs vertically downward. Coordinates are chosen such that the z-axis
is oriented downward and the position of the lower end B, when the system is
at rest, is at the origin. If B is pulled downward, then the restoring force is
given by Hooke’s law h(z) = kz with k> 0. On the other hand, if B is pushed
upward, then, in contrast to the case of the spiral spring, there is no restoring
force. A mass m is now attached at B. The vertical motion, described by £(2),
satisfies the equation

mé =mg— k. with &y =max{¢,0}

(g is the constant of gravitational force). The equilibrium position 7 is given
by ro = mg/k. Writing £(t) = ro +z(t) and setting b = k/m > 0, we obtain the
differential equation

Z+h(z)=0 with h(z)=(g+bz)+—g
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Mass on a rubber band

!

(the reader should make a sketch of 4). In this example, the potential is
1pz? for z > —rg,
H(z)=1 ? -
59(ro+2z) for z < —ro.

For small perturbations, the orbits
1
K,: E(z,y)= §y2+H(z) =qa with >0

are ellipses, and the system behaves like a harmonic oscillator. However, if
a > H(rg), then €(t) = ro + z(t) also takes on negative values, and the orbit is
a combination of an ellipse and a parabola.

The above example is typical of mechanical systems that are not symmetric
with respect. to their rest state. An interesting system of this type is a suspension
bridge, where a linear theory is appropriate for small (vertical, torsional, ...)
oscillations but fails for large amplitudes. A nonlinear theory of the dynamics of
suspension bridges is currently under investigation; cf. in this regard McKenna
and Walter (1990) and Lazer and McKenna (1990).

(d) The Mathematical Pendulum. One end A of a (weightless) rod of length !
is attached to a pivot, and a mass m is attached to the other end B. The system
moves in a plane under the influence of the gravitational force of magnitude mg,
which acts vertically downward. If ¢ denotes the angle between the vertical and
the rod, then the tangential component of the downward force —mgsin ¢ acts
on the mass point at B. If the motion is described in terms of the angle ¢(t),
then s(t) = l¢(t) gives the distance traveled by the mass (measured from the
lowest point), and from the equation of motion ms = —mgsin ¢, we obtain

$+asing=0 with a=g/l mathematical pendulum.
For small values of |¢|, one may replace sin ¢ by ¢ = sin ¢, which leads to
é+ap=0 with a=g/l linearized pendulum

as a usable approximation. Thus, for small displacements, the pendulum be-
haves like a harmonic oscillator with circular frequency w = 1/g/!.
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Mathematical pendulum

<

The potential energy for the mathematical pendulum is given by H(¢) =
a(l—cos ¢), 0 < H(¢) < 2a, and the total energy is E(¢, ¢) = 1¢*+ H(¢) > 0.
The assumption ¢ - h(¢) > 0, mentioned in earlier results, is violated here. It
holds only for [¢| < 7, and accordingly, the level sets

Ko: ¢%=2(a—-a(l—cose))

in the (¢, #)-plane are closed curves only for 0 < @ < 2a =: ap. These closed
curves correspond to periodic oscillations with & maximum angular displacement
< w. For a = 0, one obtains stationary solutions ¢(t) = 2kn. If & > ay,
the orbits K, are unbounded wavy lines, corresponding to continual rotations
about the pivot point A. Such are obtained from the initial conditions ¢(0) = 0,
$(0) = v with 3V > ap (the upper wavy lines correspond to vy > 0, the lower
wavy lines to vg < 0.) Solutions in the two cases 0 < @ < op and o > ap have
completely different behavior and are divided by the set K, which is called the
separatriz. The solution ¢(t) that corresponds to the separatrix, for instance
the one with initial values ¢(0) = 0, ¢(0) = v/2a, is monotone increasing and
tends toward 7 as t — oo (the reader should give a description of the pendulum
motion for this case).

Historical Remark. Galileo writes in the first discussion of the Discorsi
(1638) that the frequency of a pendulum does not depend on the maximal
angular diflection and is proportional to \/T/_l He is correct in the second
assertion; cf. XI.(j) below.

XI. Exercises on Nonlinear Oscillations. Suppose h is continuous in
R and satisfies z - h(z) > 0 for z # 0. Let H and E be defined as in X.

(a) Prove: If h is continuous, then every initial value problem for (11) is
uniquely solvable (cf. Exercise XIII). Theorem X remains true.

(b) Let H(z) tend toward A as £ — —co and toward B as £ — oo, with
0 < A £ B < oo. Describe the global behavior (periodicity, behavior for large
[t]) of the solution z(t) with initial values z(0) = &, #(0) = 7 in each of the
following cases: (i) 0 < E(§,n) < A. (ii)) A < E(§,n) < B. (iil) E(¢,n) = B.
Make a sketch of the phase portrait.
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(c) For which values of A, B (cf. (b)) is the following statement true? Every
solution of the differential equation that has a zero and whose first derivative
has a zero is periodic.

(d) Suppose, additionally, that h is odd. Prove: If z(t) is a solution to the
differential equation, then v(t) := z(¢c —t) and w(t) := —z(t) are also solutions.
Further, the relations

z(c) =0 = z(c+t) = —z(c —t),
Z(d)=0=>z(d+1t)=z(d—1t)

hold for every solution z. Thus the solutions have the same symmetry properties
as the sine function.

(€) The Period of an Oscillation. Let V denote the duration of the positive
quarter oscillation starting at the point (0, vg) and ending at (r,0) (vg > 0, 7 > 0
is the largest swing). Using (13) with a = H(r) = 1v, we get

1 [ ds
v=v0)= 75 |, JEEw

(f) Prove: If h is a symmetric forcing term (h odd), then T = 4V is the
period of an oscillation.

(g) Prove: If h(z) < h*(z) for z > 0, then V(r) > V*(r). If, in addition,
k(c) < h*(c) for some ¢ > 0, then V(r) > V*(r) holds for r > c.

(h) Prove: If h(z)/z is weakly or strongly increasing [decreasing], then V(r)
is weakly or strongly decreasing [increasing]. As an illustration, calculate V'(r)
for the case h(z) = z* (a > 0).

(i) Prove: If A/, (0) = w? exists, then lim,_,0 V(r) = n/(2w), i.e., for small
displacements the system is approximately a harmonic oscillator.

(j) The Mathematical Pendulum. Show that for the mathematical pendulum

(cf. X.(d)) (using 1 — cos @ = 2sin® f;- ,

1 r 1 w/2
o= o | -
Qo Jo sinzg—sinz—;- aJo 1—Kk?sin“u

where k = sinr/2 (substitution sins/2 = ksinu). This function is an elliptic
integral of the first kind. From the binomial expansion for (1—z)~1/2, it follows
that

V(r)= 2_1r\/a:0:(1 +a1k? +agk® + -+ );

in particular, V(0) = n/(2/a), in agreement with (i) and X.(b) (@ = w? here).
Calculate a;, az. By what percentage is the period of an oscillation of the
mathematical pendulum larger than that of the linearized pendulum equation
if the maximum displacement is 5° (10°; 15°; 20°)7

Hints: (g) Consider the difference H(r) — H(s).

(h) Consider V(r) and V(gr) with ¢ > 1 and write V(gr) as an integral
from 0 to r. The quotient in the corresponding H-differences has the form
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Vo

Free fall

[£(r) — £())/l9(r) — g(s)] with f(z) = H(gz), g(z) = ¢°H(z). The generalized
mean value theorem of differential calculus can be used.

(i) Use (g)-

Remark. The dependence of the period of the oscillation on the function
h was investigated thoroughly in 1961 by Z. Opial (Ann. Polon. Math. 10,
42-72); (g) and (h) can be found there. The book by Reissig, Sansone, and
Conti (1963) contains these results and a number of others.

XII. TFree Fall. In part II of the Introduction, we presented the example
of free fall from a great height. The initial value problem

mi= -y, r(0)=R, #0)=1

describes the vertical motion of a body with mass m starting at a distance R
from the center of the earth with initial velocity v, where r(t) is the distance
from the center of the earth at time ¢. From the equation

d ., 7
ET = —2’)’1\/1;3

it follows that
1 M
E(r,7) = §1'-2 -1 total energy function

is constant. Here %1‘2 is the kinetic energy term and —vyM/r the potential
energy. The latter is normalized in such a way that it vanishes at infinity and
hence is negative. The trajectories satisfy the equation E(r,7) = a. If o > 0,
the trajectories run to infinity; for o < 0, they are return curves (describing a
body that falls back to the earth after being thrown vertically upward).

The smallest total energy for a motion without return is & = 0. The corre-
sponding differential equation reads

= /27 M]r. (14)
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It has the solutions

ro =at+¢)?3, a= YoyM/2.

If R denotes the radius of the earth, then it follows from (14) that the velocity
of the corresponding motion at r = R is given by

vp = v/2yM/R = 11.2 km/sec.

This is the so-called ‘escape velocity’, the minimum velocity that a rocket re-
quires in order to escape the gravitational field of the earth.

XIII. Exercise. Let f € C(J). Show: The initial value problem

V=), v0)=med, ¥(0)=m

is locally uniquely solvable in each of the following three cases.

(a) m #0.

(b) m =0, f(mo) #0.

() m =0, f(no) =0, (y —no)(f(¥) — f(no)) < 0 for y close to ng.

(d) Give all of the solutions for the initial value problem 3" = /[y], ¥(0) =
y'(0)=0.

XIV. Exercise. (a) Let the function f(z,y) be continuous in the strip
J X R (J an open interval), and let f(z,y)-y > 0 for y # 0. Let N be the
number of zeros and E the number of local extrema of a solution y(z) of the
differential equation

Y = f(z,y)

Prove: If solutions to initial value problems with the initial conditions y(§) =
y'(€) = 0 (£ € J) are unique, then N + E < 1 for every solution y % 0 of the
differential equation. Find and sketch all solutions of the initial value problem

¥ = (sgny)VIyl, ¥(0)=4(0)=0

(to the left and to the right). This example shows that without the uniqueness
assumption the inequality N + E < 1 is not always true.
(b) Investigate the differential equation

¥ =—f(z,y)

under the same assumptions and show that between two successive zeros of
a solution there is exactly one extremum, that at each zero there is a point
of inflection, and that the set of zeros does not have a point of accumulation
in J. Which of these conclusions is false without the uniqueness assumption
introduced in (a)?
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XV. Exercise. Let g€ C(J), J=10,b], and

T
u(z) = / k(z —t)g(t)dt, ze€J,
0
where k = k(z; A) (A € R) is the solution of
k' —Me=0, k(0)=0, K(0)=L1
(a) Find k(z; A) explicitly and show that u is a solution of
w —d=g(x) in J, u(0)=1u'(0)=0.

(b) Let f(z,u) be continuous in J x R. Show that u is a continuous solution
of

u(z) = /Orc k(z - t)f(t,u(t))dt in J

if and only if it is a C2-solution of

u' =M= f(z,u) in J, u(0)=1'(0)=0."

Supplement: Second Order Differential Inequalities

We consider comparison theorems related to the initial value problem

y' = f(z,y,y) in J=[£b], y(€) =m0, ¥()=m. (15)

It is assumed for simplicity that f is defined in J x R®. The differential equation
is equivalent to a system for y = (y1,¥2) = (%, ¥'),

y;, = Y2, y,2 = f(.’l:, ., y2))

which is quasimonotone increasing if f = f(z,y,p) is increasing in y.

XVI. Comparison Theorem. Assume that f(z,y,p) is (weakly) in-
creasing in y and that v,w € C?(J), J = [£,b]. Then the inequalities

(a) Pv < Pw in J, where Pv =v" — f(z,v,v'),

(b) v(€) < w(g), v'(€) S w'(€)
imply that v < w and v/ < w' in (€,b].

If f satisfies a local Lipschitz condition in y and p, then the inequalities (a')
Pv < Pw in J (instead of (a)) and (b) imply that v < w and v’ < w' in J.

Sketch of the proof: Assume that the conclusion is false. Since v'(£) = w'(§)
implies v”(¢) < w”(€) by (a), it follows that v < w' in a largest interval
(¢,¢) with £ < ¢ < b and v'(c) = w'(c). Therefore, v"(c) > w"(c) (see proof
in 9.I). This together with the monotonicity of f and v(c) < w(c) leads to
(Pv)(c) > (Pw)(c), contradictory to (a). |
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Applications. 1. Upper and Lower Solutions for problem (15) are now
introduced in the usual way. If f(z,y,p) is increasing in ¥ and satisfies a local
Lipschitz condition in y and p, then

w" 2 f(g,w,w') in J, w(€) =m0, w'(§) 2m (upper solution)

implies w > y and w’ > ¥’ in J, where y is the solution of problem (15).

2. Mazimal and Minimal Solutions. If f(z,y,p) is continuous and increasing
in y, then the initial value problem (15) has a maximal solution y* and a minimal
solution y, with the property that y. < y < y* and ¢, <4’ < y*’ for any other
solution y. The maximal solution is constructed as a limit of solutions w., of
problem (15) in which f is replaced by f(z,y,¥’) + 1/n. The sequence (wy)
is decreasing and converges to a solution y* with the properties just stated.
Furthermore, the following comparison theorem holds:

v < f(xavav,)a U(g) < 1o, ’Ul(f) <Sm=uv< y*a v < y*, in J

Ezercise. Prove these statements; formulate and prove similar propositions
for lower solutions.

3. The comparison theorem holds in an interval [a,£] to the left of £ if (b)
is replaced by (b-) v(£) < w(§), v'(§) = w'(§)-

4. These results extend to the case where f is continuous in an open set
D C R? and increasing in y. In particular, the maximal and minimal solutions
can be extended to the right and left up to the boundary of D.

5. Erercise. Show using Exercise XV that for u € C?(J), g € C(J), J =
[0,v], A >0,

v ~d<g(z) in J, u(0)<0, «(0)<0
implies
1 [® Jr
uxs—/sinh Az —t)g(z) dt.
(z) 7 s (z —t)g(t)
XVII. Nonlinear Differential Operators. The A, Operator. We

introduce instead of y” a nonlinear operator Ly = (¢(z,y’))’ and consider a
corresponding equation Ly = f(z,y) with the defect operator Pv = Lv— f(z, v).

Comparison Theorem. Let J = [£,b], Jo = (&, b], and assume that f(z,y)
is increasing in y and ¢(z,p) is strictly increasing in p. If v,w € C*(J) with
B(z,), d(z,w") € COJ) N C(Jo) satisfy

Pv<Pw in Jo, and v(€) <w(€), (&) <w'(€),
thenv <w and v’ <w' in J.

Ezercise. Make a proof along the lines v < w = Lv < Lw = ¢(z,v') <
¢(z,w') = v/ < w' = w — v increasing.
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As an application, we consider the A, operator (p-Laplacian) in R,
Apu=div (|VuP"?Vu) for p>1 (Vu=gradu)

(note that A, is the classical A operator), which for radial functions u = u(r)
is given by

Apu =" P2Y, r=|z| (z€R").

Using the operator LBy = r~*(r®|y’|P~2y/)’ (note that L2 is the operator L,
introduced in 6.XIJ), one can deal with the A, operator for radial solutions as
was done in 6.XIV with equations involving Awu.

Theorem. Let f be continuous and bounded in J xR, J = [0,b], Jo = (0, ),
and o > 0, p > 1. Then the problem

LBy = f(z,y) in Jo, y(0)=m, ¢(0)=0

has a solution y € C'(J) with LBy € C(J). If f is increasing in y, then the
comparison theorem (with v'(0) = w'(0) = 0) holds for this equation.

The existence proof uses Schauder’s fixed point theorem 7.XII. Uniqueness
is more difficult. Show: The problem Liu = u, u(0) = u'(0) = 0 has three

solutions of the form u = ¢ - z2.

§ 12. Continuous Dependence of Solutions

The problem discussed here arises naturally in the modeling of physical
processes using differential equations. Numerical values, representing physical
quantities, enter into the differential equation and the initial conditions (initial
position, initial velocity, mass, gravitational constant, ...). These quantities
are obtained from measurements and, consequently, are not precisely known.
One would require, based upon experience with the physical problems, that the
solutions (say, to an initial value problem that models the motion of an object)
are “insensitive” to small changes in these numerical values. This idea is given
a more precise formulation and investigated in this section.

I. Well-Posed Problems. A mathematical problem used to model a
well-defined physical process that proceeds in a unique manner should satisfy
three general requirements.

(a) Ezistence. The problem has at least one solution.

(b) Uniqueness. The problem has not more than one solution.

(¢) Continuous Dependence. The solution depends continuously on the data
that are present. For instance, if the model results in an initial value problem,
then the solution depends continuously on the right side of the differential equa-
tion and on the initial valuess Or to put it another way: If a “small” change is
made on the right side or in the initial values, then the solution changes only a
“little.”
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A problem is called well-posed if it has the properties (a), (b), and (c).
Our aim is to prove well-posedness for the initial value problem y’ = f(z,y),
y(€) = 7. Since the requirements (a), (b) have already been investigated, we
deal primarily with requirement (c) in this section. Let us remark in closing that
there are instances where a small change in a parameter introduces important
new physical phenomena (like resonance), so that (c) is not always a physically
meaningful requirement.

Historical Remark. Existence and uniqueness for the initial value problem
were rigorously treated by Cauchy as early as around 1820. Continuous depen-
dence on the data as an equally important requirement was emphasized about
a century later by the French mathematician Jacques Hadamard (1865-1963);
cf. Hadamard (1923, Chap. II). In Courant and Hilbert’s classic Methoden der
Mathematischen Physik (Vol. II, 1937, p. 176) a “sachgemdfles Problem” is
described, perhaps for the first time, in much the same way as in (a)—(c) above.
In the English edition (1962) this is translated as a “properly posed problem.”

II. Differential Equations for Complex-Valued Functions of a Real
Variable. We first extend the notion of an initial value problem by allowing
the functions that appear to be complex-valued. The independent variable z,
however, remains a real variable as before. Since C and R? (and likewise C* and
R?") are equivalent as sets, as metric spaces, and with respect to the additive
structure, we can represent the complex-valued function y : J — C as a pair of
real functions

y(z) = (v(z),v(z)) = u(z) +iv(z) with u=Rey, v=Imy.

Likewise, we write y = (u,v) for y € C* (u,v € R"). Then f(z,y): J x C"* —
C™ can be written in the form

f(za Y) = (g(z’ u, V)a h(z:, u, V)),

and hence the “real-complex” system of n differential equations

y =f(z,y) 1)
is equivalent to a real system of 2n differential equations

v’ =g(z,u,v),

(2)

v/ =h(z,u,v).

Further, continuity, respectively Lipschitz continuity, with respect to y for f is
equivalent to continuity, respectively Lipschitz continuity, with respect to (u, v)
for g and h.

It follows that the earlier theorems for real systems remain valid for systems
with complex-valued functions. This statement can also be verified directly,
since the earlier proofs remain valid without changes if C(J) is understood to
be a Banach space of complex-valued functions.
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Ezample. In the differential equation
=Xy +g(z)
let A = p +iv and g(z) = h(z) + ik(z) € C(R). The equivalent real system is
v = pu ~— vv + h(z),
v =vu+ pv + k(z).

As in the real case, the general solution is
y(z; C) = Ce** + / e 2=g(1)dt (C e).
0

The proof is left as an exercise for the reader.

It is frequently more convenient to work with (1) instead of (2) from a
practical point of view (cf. the above example). There is also an important
theoretical reason for preferring (1). In the example given above, the right-
hand side of the differential equation is a holomorphic function of the parameter
A € C. This property arises frequently, and an important theorem says that if
the right-hand side is holomorphic in A, then the solutions are also holomorphic
in A (this is evident in the example). This theorem is proved in the next section.
It is needed in a later chapter in the investigation of eigenvalue problems, among
others.

Notice. The theorems in §12 are true for systems where the right-hand sides
and solutions or approximate solutions are real-valued, as well as for those where
they are complex-valued; in both cases, however, the independent variable z is
always real.

The following estimation theorem, Theorem III, deals with the initial value
problem i

y =f(z,y) inJ, y()=n (3)

It gives an estimate for the difference z(z) — y(z), where y(z) is a solution to
(3) and z(z) is an “approximate solution.” The two quantities

z(¢§)—n and Pz=2z —f(z,z) (defect)

are used to measure of how “good” z(z) is as an approximation to y(z). The-
orem III establishes a bound p(z) for the difference |z(z) — y(z)| that depends
on a bound on the initial deviation (a), and a bound on the defect (b), and,
most important, a condition (d) on f that includes the Lipschitz condition as a
special case.

III. Estimation Theorem. Let the vector functions y(z), z(z) and the
real-valued function p(z) be defined and differentiable in the interval J : £ <
z < £+ a. Let the real-valued functions §(z) and w(z,z) be defined in J and
J x R, resp., and suppose the following conditions are satisfied:
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(a) 12(8) —y (&) < p(8),
(b) y' =f(z,y), |z—£(z,2)|<é(z) inJ,
(c) ' > é(z) + w(z, p(z)) in J, and
(d) [f(z,y) — f(z,2)| Sw(z,|ly —2) in J.
Then
lz(z) ~y(z)| < p(z) in J.

If w(z,y) is continuous end locally Lipschitz continuous in y, then the theorem
holds with < in all places. Naturally, we assume that f is defined in o set D
containing graphy and graphz.

In the proof, we need the following Lemma.

IV. Lemma. If the vector function g(z) is differentiable al zo, then the
scalar function ¢(z) = |g(z)| satisfies

D™ ¢(zo) < |g'(z0)] and D¥(zo) < |g'(20)l-

As a matter of fact, the one-sided derivatives ¢/, and ¢’ exist at zo; cf.
B.IV.

The proof proceeds by passing to the limit as A — 0+ in the inequality
(bere h > 0),

¢(z0) — d(zo — h) _ |g(zo)l — |&(zo — k)| _ |&(Z0) — &(z0 ~ })
h h - h ’

and similarly for the second inequality. |

Proof of the Estimation Theorem I11. We apply Theorem 9.11I with ¢(z) =
|z(z) — y(z)|, ¥(z) = p(z), and w instead of f. By hypothesis (a), the require-
ment ¢(€) < (&) is satisfied. Since Pp = p’ — w(z, p) > 6(z) by (c), it remains
to prove that P¢ < 6(z). Indeed, it follows from the lemma and assumptions
(b), (d) that

D™¢(z) < |2/ (z) - ¥'(z)|
= |z’ — f(z,2z) + £(z,z) — f(z,y)|
< é(z) + w(z, |z — y|) = 6(z) + w(z, p(z)).
In the theorem with < we apply Theorem 9.VIIL | |

The most important special case is the following
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V. Lipschitz Condition. Theorem. Iff satisfies a Lipschitz condition
in D,

|£(z,y1) — £(z,y2)] < Lly1 - yal, (4)

and if y(z) is a solution and z(z) an approzimate solution to the initial value
problem (3) in J such that

2(6) ~y(@)l <7 |2'(z) - f(z,2)| <6 (5)

(v, & are constants), then the estimate

[y(a) - a(a)| < yebel 4 (e _ 1) (©)
holds in J. Here J is an arbitrary interval with £ € J.

In the estimation theorem, we set w(z,z) = Lz and use the second version.
Al four assumptions are satisfied if p(z) is the solution of

p=6+Lp in J, p(&)=1.

This leads to the bound in (6) for z > £. The case £ < £ can be reduced to the
estimation theorem in exactly the same way by a reflection about the point &.
| |

If § = v =01in (5), then the estimate (6) implies that y(z) = z(z). Thus (6)
contains the uniqueness result proved earlier in the case where the right-hand
side satisfies a Lipschitz condition. However, it also includes significantly more,
namely a

V1. Theorem on Continuous Dependence. Let J be a compact in-
terval with & € J and let the function y = yo(z) be a solution of the initial value
problem

y =f(z,y) in J, y&)=n (3)

The a-neighborhood (o > 0) of graphyq (definition: the set of all points (z,y)
with z € J, |y — yo(z)| < a) will be denoted by S,. Suppose there exzists o > 0
such that f(z,y) is continuous and satisfies the Lipschitz condition (4) in Su.

Then the solution yo(z) depends continuously on the initial values and on
the right-hand side f£. In other words: For every e > 0, there exists 6 > 0 such
that if g is continuous in S, and the inequalities

lg(z,y) - f(z,y)| <6 in Sa, [C—m|<é (7)
are satisfied, then every solution z(z) of the “perturbed” initial value problem
7 =g(z,2), z(§)=¢ (8)

ezists in all of J and satisfies the inegquality

[2(@) ~ yo(z)| <& in . (9)
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Proof. Let z(z) satisfy (7) and (8). As long as the curve z(z) remains in Se,
(5) is satisfied for yo(z) and z(z) with v = 6. Thus (6) holds with v = 4. If
7 = 6 is chosen sufficiently small in (6), then it is easy to see that the right side
of (6) is < /2. Aslong as z(z) remains in S,, i.e., as long as |yo(z) —z(z)| < «,
the estimate (6) holds and hence, as a matter of fact, |yo(z) —z(z)| < /2. From
here one sees immediately that the curve z(z) cannot leave the neighborhood
Sa- Thus the estimate (6) with v = 6 holds in all of J. Therefore condition (9)
is easily satisfied (for an arbitrarily given € > 0); one has simply to take vy =6
so small that the right-hand side of (6) is < . |

Remarks. 1. The theorem applies, in particular, if D is open and f and
Of /8y are in C°(D). Indeed, if yy is a solution on a compact interval J, then
there exists an @ > 0 such that S, C D, and furthermore, a Lipschitz condition
holds because of the continuity of the derivatives of f.
2. The theorem applies to the case where |Pz| = |2’ — f(z,2)| < 6 because
z is a solution of (8) with g(z,y) :=f(z,y) + (Pz)(z).

Supplement: General Uniqueness and Dependence
Theorems

The Lipschitz condition in Theorem VI can be replaced with a significantly
weaker uniqueness condition.

VII. Dependence and Uniqueness Theorem. Let the real-valued func-
tion w(z,2) be defined for z € J := [£,6 +a] (@ > 0), z > 0, and have the
property:

(U) For every e > 0, there exist § > 0 and a function p(z) such that

p>6+w(z,p) and 0<b6<p(z)<e in J
If £ satisfies the estimate

[£(2,y1) = £(z,y2)| < w(z ly1 = yal) (10)

in D C J x R®, respectively J x C", then the initial value problem (3) has at
most one solution. The solution depends continuously on n end £ in the sense
described in Theorem V1.

Proof. If y is a solution of (3) and € > 0 is given, we determine p(z) and 6
according to (U). If z satisfies (7), (8), then it follows immediately from Theorem
III that |y(z) — z(z)| < p(z) < &. |

VIII. Examples of Well-Posedness. The theorem states in particular
that if f is continuous and the function w satisfies (U), then an estimate of the
form (10) gives a condition for well-posedness of problem (3). Some examples
of functions w that satisfy (U) are:

(a) The Lipschitz Condition (R. Lipschitz 1876): w(z,z) = Lz.
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(b) Osgood’s Condition (1898): w(z, z) = ¢(z), where g € C[0, ), g(0) = 0,
g(z) > 0 for z > 0, and

fi==

(c) Bompiani’s Condition (1925): Let the function w(z,z) be continuous
and > 0 for z € J, z > 0. Let w(z,0) = 0 and suppose the following condition
is satisfied:

If ¢(z) > 0 is a solution of the initial value problem
¢, = LU(IL‘,¢) in Jy:= [6:6 +a)1 ¢(£) =0,

then ¢ =0 in J;.
(d) Krasnosel’skii-Krein Condition (1956):
w(z,z) = min (Cz"‘, zk_zg) for z>¢

with0<a<1,0<k(l-a)<1,C>0.

Example (a) is clearly a special case of (b). By Theorem 1.VIII, (b) is a
special case of (c). To show that a function w that satisfies (c) also satisfies
(U), we modify w for z > 1 by setting w(z,2) = w(z,1) for z > 1. Then w is
bounded. Let p, be a solution of the initial value problem

1 1
- —_ 1 = —,
. =w(z, pn) + - in J,  pa(0) -

Since w is bounded, p, exists in all J. By Theorem 9.III, the sequence (p,)
is monotone decreasing. Therefore ¢(z) = lim pn(z) exists. Furthermore, the
sequence (pr) is equicontinuous, and hence the convergence js uniform (follows
from the boundedness of w and 7.III). Representing the initial value problem
for p, as an integral equation and taking the limit as n — oo gives

¢(z) = /5 ’ w(t, d(t)) dt.

From (c) it follows that ¢ = 0 in every interval J; = [£,£ + a in which ¢ <1
(note that w was modified, but only for z > 1). It follows easily that ¢ = 0 in
J. Thus (p,) converges uniformly to 0 in J. Therefore, for every € > 0, there
exists § = 1/(2n) and p = p, such that (U) is satisfied.

Example (d) is also a special case of (c). However, the verification is some-
what more difficult; cf. Walter (1970; p. 108).

Remark. More general uniqueness conditions of Nagumo, Kamke, and others
can be found in the literature. Their importance, however, is limited by the
fact, proved first by Olech (1960), that a continuous function f that satisfies
such a general condition also satisfies the condition in Theorem VII. References
to the literature and historical remarks are contained in Walter (1970; see, in
particular, §14).
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§ 13. Dependence of Solutions on Initial Values
and Parameters ‘

In this section the problem of dependence of the solution of an initial value
problem on the data is investigated further. At the same time, the structure of
the problem is generalized in two directions. First, we consider the case where
the right side of the differential equation depends on a parameter A; that is,
f = f(z,y; ). Second, we consider

I. Volterra Integral Equations of the form
T
y(z) = g(z) + ~/5 k(z,t,y(t)) dt. (1)

The integral equation (6.3) for an initial value problem is a special case. There
g(z) = n is constant and the “kernel” k(z,t,z) is independent of z.

Ezample. In §11 we showed how to transform an initial value problem
y'=f(z,y) with y(0)=mno, ¥'(0)=m

into a system of two differential equations of first order. This problem can also
be written as an equivalent Volterra integral equation,

M@=m+mw+A?%ﬁﬁwmmﬁ (@)

(the proof is an exercise). For the investigation of some types of problems
equation (2) is more useful than the first order system.

More generally, we consider a vector integral equation of Volterra type de-
pending on a parameter A,

4
y(z:A) = 8(z; A) + / k(z,t,y(t; A); A) dt (3)
a())
in an interval J. Here z and t are always real. However, g, k, and y may be
complex-valued. More than one real or complex parameter is permitted; i.e.,
A € R™ or C™. Our objective is to study the dependence of y(z;)) on ). It is
not assumed that a(})) < z.

II. Theorem on Continuous Dependence. LetJ = [a,b] and let K C
R™ be compact. Let the functionsg : Jx K - R*", a : K — J and k :
J2 x R™ x K — R™ be continuous in their respective domains, and let k satisfy
a Lipschitz condition

lk(z, t,u; A) — k(z,t,v; )| < Lju - v]. @

Then the integral equation (3) has ezactly one solution y(z; ) for every A € K.
The solution is continuous as a function of (z;\), that is, y(z; A) € C(J x K).
The theorem is also valid with R replaced by C (the complex case).
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The proof uses an argument similar to the one in 6.I. The space B =
C(J x K) with the norm

lul] = sup {|u(=; )le 2H==*M: (2;3) € T x K}
is a Banach space. For u € B, we define
z
(Tu)(z; \) = g(z; \) + / K(z, b, u(t; \); A) dt. 5)
a(r)

Clearly, Tu € B if u € B. The Lipschitz condition (4) implies that

(Tu-Tv)| <L

/ " Ju(s N — v V)| dt
A)

[+

Since |u(t, A)| < ||uf| - e?Elt==M!] the right-hand side of the inequality is less
than or equal to

D —vil| [ eHe-elat) < Zu— vljle=e,
a(n) 2
and hence,
1
[Tu—-Tv| < illu - vi. (6)

The conclusion follows now from the fixed point theorem 5.IX as does the fol-
lowing corollary. [ ]

Corollary. For every up € C(J x K), the sequence of successive approzi-
mations (ug) with gy = Tux (k=0,1,2,...) converges uniformly on J x K
to the solution y. B

III. Theorem on Analyticity in A. Let the assumptions from II (com-
plez case) hold, and let K° be the interior of K C C. If a()) is constant, g(z; A)
is holomorphic with respect to A in K° for fized z € J, and k(z,t,y;X) is holo-
morphic with respect to (y,)) in C* x K° for fized (t,z) € J?, then the solution
y is holomorphic with respect to A € K° for fized z € J.

This result follows from the corollary in II and the following fact: If u €
C(J x K) is holomorphic with respect to A € K°, then the same holds for
Tu. Thus, if the successive approximations are started with a function ug that
is holomorphic with respect to A, then the whole sequence and, by uniform
convergence, its limit are holomorphic with respect to A. |

Extension. Clearly, a corresponding theorem holds if both real and complex
parameters appear in the right-hand side. Let A = (X, \") with X € R?,
M e CI. If a()) = a()) and if g and k are holomorphic in A" and (y, A"),
respectively, then the same holds for the solution.
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Theorem III implies that the solution y(z; ) is differentiable with respect
to complex parameters. The corresponding proposition with respect to real
parameters is more difficult to prove. The following proof can be omitted at
first reading. It depends on a theorem about approximate iteration in a Banach
space, which is an extension of the contraction principle 5.IX. It was proved in
a special form (with 8, = 0) by Ostrowski (1967).

IV. Ostrowski’s Theorem on Approximate Iteration. Let D be a
closed subset of a Banach space B and let R: D — D be a contraction,

|[Ru— Rv|| <gllu—v|| in D withg<]1.

Suppose the sequence (vk) in D satisfies

!

Vk+1 = Rk +ar  where, |jak|| < ok + Bl|vell

and (ax), (Bk) are real null sequences. Then the sequence (vx) converges to the
fized point z of R: limwv; = z with z = Rz (the ezistence of the fized point is
guaranteed by the contraction principle 5.IX).

Proof. Because z = Rz, we have
[vk41 — zl| < [|Rox — Rz + |lax|| < gqllox — 2I| + llal|-
Using the hypothesis on a;. and the inequality |lvg| < |lvk — 2|| + ||2||, we have
lakll < o + Bellvw — zI| + Bkl 2]l
Hence the term e = ||lux — 2z|| satisfies
k1 < (g + Brex +x with  ve = ai + Bil|ll,

where the sequence(y;) is a null sequence.

From here it easily follows that £, — 0. Let £ > 0 and r € (g, 1) be given.
Then there exists an index p such that ¢+ fx <7 and v, < e(l —7) for k > p,
which implies ex+1 < reg + (1 —r) for k > p. In terms of é; := € — ¢ this
reads

Opy1 <rb for k2>p.

If 6 > 0 for all k > p, then obviously 6, — 0 monotonically; if one member
6. is negative, then 6 < O for all £ > n. Hence limsup 6 < 0, which implies
lim supey < ¢; i.e., limeg = 0, since g, > 0. |

V. Differentiability with Respect to Real Parameters. First we
recall the chain rule for vector functions. If u : R — R™ and v(t) := f(u(t))
with f € C?, then

) = 3 g (aE) O (=1,eeein)

i=1
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In matrix notation this formula is written

v/(t) = fy (u(t)u' (8),

where f, = Of /9y is the n x n Jacobi matrix of f, and v/, v’ are column
vectors. The same formula holds for complex-valued functions (C instead of
R). In matrix products, vectors are always 1nterpreted as column vectors (for

example g, k, y).

We show that the solution is differentiable with respect to a real parameter
and that (3) can be formally differentiated, provided that all the derivatives
of g and k that appear exist and are continuous. Let T be given by (5), and
let A = (N,)") with X’ € R; the remaining parameters (real or complex) are
lumped together in A”. Differentiating formally, we obtain

N (Tu) S(u, U)‘/), (7)

where
Su,v)(z;A) = gx(z; ) — an(Ak(z, a(X), u(@(r); A); A)

+ / :) [ka(z, 2, u(t; A); 2) 8)

+ky(z,t,u(t; A); A)v(t; A)] dt

VI. Theorem. Let the assumptions from II hold; let the derivatives ay/,
gy, ky ky be defined and continuous in K°, respectively J x K°, respectively
J2xR™ x K° (in the complez case J2x C" x K°), and let y(z;)\) be the solution
of (3). Then the derivative yx ezists and is continuous in J x K°; and

¥y = S8(y,¥x) 9)

Proof. Let C* be the set of all u € C(J x K) such that uy exists and is
continuous in J x K°. Let the operators T', S be defined by (5), (8), respectively.
Clearly, if u € C*, then T'u € C* and (7) holds.

Let ug € C*,vg = Bug/0) and define sequences (ux), (vi) iteratively as
follows

gy =Tug, Vi = S(uk, ve) (k2 0).
Thus u; = T'ug, and using (7),
= S(ug, Vo) = S(ug, Bug/dN') = Bu, /AN
Proceeding inductively in this manner, one shows that in general,

uy € C* and Vk=6uk/6)\' (k:ZO).
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Now choose a compact subset K; C K° and consider S and T' as operators
on the Banach space B = C(J x K;) with the norm defined in II:
flul| := sup{|u(z; A)|e~2L1==eMN | (£; \) € J x K;}.
From Corollary II it follows that lim u; =y, where y is the solution to (3).
We now apply Theorem IV to the operator R = S(y,-}in D = B:
EA4
Rv=_5(y,v)= / ky(...,y)Vv(t;A) dt + terms without v.
a(X)

The kernel of this integral,
k*(z,t,v; A) = ky(z,t,y(t; A); A)v,
is linear in v. Thus we have
k*(z,t,v,\) = l&iﬂno % {k(z,t,y(t; A) + hv; X)) — k(z, t, y (8 A); A}

Using the Lipschitz condition (4), we see that the difference in braces on the
“right hand side is < L|hv| in absolute value. From here it follows immediately
that [k*(z,t, v; A)| < L|v|, i.e., that k* satisfies the Lipschitz condition (4) with
respect to v. Therefore, exactly as in the proof of II, R satisfies the Lipschitz
condition in Theorem IV with ¢ = 1. The fixed point z of R is a function
z € C(J x K;) that satisfies

z=5(y,2)- (10)
The sequence (vy) satisfies
Vi1 = S(ug, Vi) = Rvi +a,  with ap = S(ug, vi) — S(y, vi)-

The term ay, consists of four differences corresponding to the four summands of
S (see (8)). Since lim uy = v, (uniformly), the sum of the first three differences,
which do not contain vg, is bounded by a term ay with lim o = 0. The fourth
difference is bounded by a term of the form f||vi| with lim 8, = 0. Thus
Theorem IV can be applied, and we obtain

u,—y and viy=0u/0\N -z in B=C(Jx K).

It follows now from an elementary theorem in analysis (the statement and proof
follow in VII) that y is differentiable with respect to M in J X K7 and z = y .
Since K was arbitrary, the proof of Theorem IV is complete. |

VII. Lemma. Let (¢,(t)) be a sequence in C[a,b] and let ¢, — ¢ and
@), — 1 uniformly in [a,b]. Then ¢ € C'[a,b] and ¢’ = .

Proof. Passing to the limit in the formula

$a(t) = bu(a) + / " 4.(5) ds,
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one obtains

¢m=ﬂ@+/¢mm

and hence the conclusion. |

VIII. Remarks. (a) If G C R? is an open set and u(z,...,%;) is a
continuous function in G, then the statement u;, € C(G) means that this
derivative exists in G and has a continuous extension to G. The class C*(G)
is defined correspondingly. There is a corollary to Theorem VI that is true in
this sense. If K is the closed hull of K° and if all of the assumptions of VI hold
for K in place of K°, then yx € C(J x K). In this case, (10) has a solution
z€ C(J x K).

(b) Statements about higher order derivatives follow immediately from The-
orem VI. Since derivative yy also satisfies an integral equation (9) of the type
of equation (3) (as a matter of fact, it is a linear equation), one can again apply
VI. Arguing along these lines, one obtains the following

Theorem. If the partial derivatives of o and g with respect to Ay,...,Am
and the partial derivatives of k with respect to t; y1,.--,Yn; A1,---,Am Up o
order p are continuous in their domains (given explicitly in Theorem VI), then
the derivatives of y with respect to Ay,..., Ay, up to order p are continuous in
J x K°, and they can be obtained by differentiating with respect to A\; under the
integral sign in (3).

IX. The Initial Value Problem. When an initial value problem

y =£(z,y), y=mn (11)

has exactly one (maximally extended) solution for a given (£, ), then we denote
this solution by y(z;&,n) in order to emphasize the dependence on the initial
values.

Ezample. The general solution of the differential equation (n = 1)
y =2zy+1 - 227
isgiven by y =z + Ce*". Tt follows that
y@i&m =z + [~ ¢

The theorems obtained above can be applied to (11), since the initial value
problem is equivalent to the integral equation

y(z:ém) =n+ /E £(t,y(t:€,m)) dt. (12)
Here we have A = (£,7), g(z;A) =7, (X)) =¢.

However, since f is frequently not defined on all of the strip J x R™, respec-
tively J x C™, we need a corresponding local theorem.
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X. Theorem. Letf and 8f/3y be defined and continuous in a domain
D Cc R xR". Let (§0,m9) € D and yo(z) := y(;&0,70)- Suppose J = |a, b
is a compact interval such that yo ezists on J, and denote by S, the set S, =
{(z,9):z € J, Iy - yo(@)] < a}-

Then there ezists an « > 0 with S, C D such that the function y(z;€,m) is
defined in Jx S, (i.e., every solution of the initial value problem with (€,m) € S,
exists at least in J), the functions y, ye, yn and their derivatives with respect
to z, ‘which are denoted by y’, y¢, yf,-,, are continuous in J x S, and

Ve(zi&,m) = ~£(6,) + /E "6y (6, y (656 ) (13)

yn(z:&n) =1+ /: £y (¢, y(t: €M) - yn(t; €, m)dt, (14)
and

ye(z;€,m) + yn(z;€,m) - £(&,m) = 0. (15)

Remarks. 1. Notation: y, y’, y¢, f are column vectors; fy, yg, yf,7 are
n X n matrices (cf. the remark in V); I is the identity matrix; (14) is a linear
matrix-integral equation (it is equivalent to n vector-integral equations for the
columns Yy, ); the product £, - y5 is a matrix product.
2. The theorem remains valid in the complex case with C™ in place of R™.

We simplify the proof by extending f continuously and differentiably to the
strip J x R and then applying the earlier results (the proof is also valid in the
complex case). Let 8 > 0 be chosen such that Syp C D. We determine a real
function h(s) € C*(R) that satisfies

1 for z<6,
h(s) =
0 for z2>28,

and 0 < h(z) < 1, and we define

*(z,y) = £(z, yo(2) + (¥ — yo(=)) R(ly — yo(z)]))-
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Clearly, the expression yo(z) + (y — yo(z))h(ly — yo(z)|) that appears on the
right-hand side lies in Syg for (z,y) € J x R™. Moreover, f = f* in Sg, and f*
has continuous and bounded derivatives in J x R™ with respect to y; and hence
satisfies a Lipschitz condition (4). By Theorem II, the system (11) with £* on the
right has a solution y*(z; £, n7) that exists and is continuous in J x J x R™. If the
initial point (£,7) lies on the curve yo(z), then y*(z;£,n) = yo(z). Thus by the
uniform continuity of y* in all variables, there is an o, 0 < o < 8, such that y*
remains in Sg for (£, M) € Se. For these values of (£, 77), the relation y(z; £, ) =
y*(z;€&,n) holds. Thus by Theorem VI, (12) can be formally differentiated, and
one obtains (13), (14), first with f*, which, however, can then be replaced by f
for (¢,m) € S,. Since in (13) and (14) the integrand is a continuous function,
the derivatives y',y, ... exist and are continuous.

By (13), (14), the left side of (15), call it v, satisfies a homogeneous linear
integral equation

v(z) = / fy - v(2) dt,
¢
which has only the zero solution (Theorem II). This proves equation (15). R

XI. Higher Order Derivatives. Differentiation with Respect to
Parameters. Now suppose the differential equation depends on a parameter,

yl = f(z)Y) )‘) (16)
Instead of (12), one then has

y(@EmA) =0+ /6 (6, y(t£,m,0), A) de. (17)

Let f here be defined in D x K°, where D is a domain and K° is an open set in
M-space. Let A = (A, A"}, where )\’ is a real or complex parameter and )\’ is a
vector parameter. The following theorem extends the results of Theorem X to
the present case (S is defined as in X):

Theorem. If f, £y, fn are continuous in D x K° and if there ezxists a
solution yo(z) = y(; €0, Mo, Ao) in a compact interval J, where (£, Mg, Ao) €
D x K°, then there exists o > 0 such that y(z;£,m, A) is defined in J x S X Uy,
Uap = {\: |A = Xo| < a}. The statements in Theorem X, in particular (13) -
(15), hold in J x Sq X Uy (the variable A needs to be added to the formulas).
Further, ya is continuous on this set, and

YN (Z; &mn, )‘) = LI {fN (t) Y )‘) + fY(t) Y, )‘)YN (t; & m, )‘)} dt. (18)

In the complez case, f is assumed to be holomorphic in (y, '), and the solution
is holomorphic in X'.
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Proof. Real Case. One chooses again 8 > 0 with Spg C D and extends f
continuously and differentiably as in Theorem X. The extension f* is defined
in J x R™ x K° and agrees with f in Sg x K°. Theorem VI is applied to the
equivalent integral equation (17) with f* in place of f (note that if K; C K° is
compact, then since f; is bounded on J x R™ x Kj, it follows that f* satisfies
a Lipschitz condition with respect to y in this set). All of the statements now
follow for the extension f*. Further, there exists an @, 0 < & < f, such that if
(é,m) € Say A € Uy C K°, then the solution y remains in Sg/o, and therefore
all the statements also hold for f.

Complez Case. In this case it is necessary to prove the holomorphy with
respect to A'. By hypothesis, f is holomorphic in (y, A’). This suggests an ap-
plication of Theorem III, which comes to nothing, because f* is not holomorphic
in y. However, the proof of Theorem III can be carried over. Beginning with
the term ug = y(z;&,7, Ao), @ sequence (ug) of successive approximations is
constructed with respect to the equation for f*. Since {u) tends uniformly to
y and since y is in Sg/; for (§,7,A) € S X Us, it follows that u; remains in
Sp for these parameter values for k£ > kg. Now, ug is the solution y{..., Ao),
which implies ug(. .., Ag) = y(..., Ao) for all k. Since y remains in Sg/2, as was
already mentioned, there exists a v > 0 such that if |[A — Ag| < =, the first kg
terms of the sequence (uy) also lie in Sg. Since, however, f* = f is holomorphic
in y on this set, all of the uy are holomorphic in )/, and the same holds for y,
at least for [A — Ag| < . In this proof one can take any element of Uy, for Ag,
and the holomorphy of the solution in U, follows. R

Remark. {a) Note that the derivatives of y with respect to £, 7, and )’ all
satisfy a linear integral equation of the form

2(; 1) = h(z; 1) + /E "8, (b (& 1), Nalt ) dt, (19)

where p = (€,7,)), and
z=0y/06: h=—f({n,]N),
z=0y/0n: h=g¢; (th unit vector),
z=08y/0N: h= f; £ (8, y(t; €, 1, A), A) dt.
Thus in each case, one has a linear differential equation for z,

z'(z; 1) = fy (z, y(z; 1), Na(z; ) [+ Ex(z, y(z; ), N)), (20)

where the term in square brackets appears in the case z = 8y/0)’.

(b) Based on these observations, the question of the existence of higher
derivatives can be easily answered, since Theorems II, III, and VI apply to the
(linear!) integral equation (19). If the partial derivatives of f, which occur in a
formal differentiation of (19), exist and are continuous, then the differentiation
is “allowed,” and the corresponding derivative of y exists and is continuous.
Here one always obtains an integral equation of the form (19), but each time
with a different h. In particular, the following is true.
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Corollary. Iff is p-times continuously differentiable with respect to all vari-
ablesz, y, A in DX K°, theny is p-times continuously differentiable with respect
to all the variables T, €, M, A in J X Sq X U,. The same holds for y', because
of the differential equation (16).

XII. Exercise. Show that in the initial value problem for the differential
equation with separated variables

y'(z) = f(z)9(y), (&) =n,
the derivatives of y(z;&,n) in the case g(n) # 0 are given by

ve(z; €,m) = — f(£)9(y(z; €, M),
yn(z; &,m) = g(y(z; & M)/ 9(n)-

Here only continuity of f and g are assumed.
Hint: Differentiate the identity (1.8).

XIII. Theorem. Suppose thatf satisfies a local Lipschitz condition with
respect to y in the open set D C R™1. Let y(z;€,7m) denote the (mazimally
extended) solution of the initial value problem (11) and E C R™*? the domain
of this function (that is, E is the set of all (z;€,m) such that the solution of (11)
exists from € to ). Then E is open, and y(z;€,m) : E — R is continuous.

Proof as an exercise. Hint: If (z,€,m) € E and, say, £ < z, then the
solution exists in J = [ — &,z + €] (¢ > 0 small). Construct a strip So C D as
was done in Theorem X and apply Theorem II






Chapter 1V
Linear Differential
Equations

§ 14. Linear Systems

I. Matrices. We denote n x n matrices by uppercase italic letters,
an -0 Gin
A= - 1 | =(ay),
Gnl ** Gnn

where a;; € R or C. With the usual definitions of addition and scalar multipli-
cation of matrices,

A+B= (ai_-,' + bij): AA = (/\aij)’

the set of all n x n matrices forms a real or complex vec;;or space. One can inter-
2

pret this space as R™ (or, for complex aij, bij, A, as C" ). Matrix multiplication

is defined by

., AB= C Cij = Zaikbkj-

k=1
It is not commutative. We recall the definition of the determinant of A:
det A = Z(—l)"(p)alm A2p, ** * Qnp, s (1)
P

where p = (pi1,-..,Pn) runs through all permutations of the numbers 1, ...,n
and v(p) is the number of inversions of p.
For n x 1-matrices, i.e., column vectors, the previous notation is used

»

a1
a=| : |, occasionally also a=(a,...,an) .

an

1589
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The expression A" denotes the transpose of the matrix A.
The notation

Gy
A=(ay,...,a,) with a, =
Qni
is self-explanatory. In particular,
I=(es,...,en) = (6;) with 6= { L for 2=,
0 for i#3j
is the identity matriz, e; the ith unit vector. Finally,

n
Ax =y < y,~=Za,~sz~.
Jj=1

II. Compatible Norms. Let [A] be a matrix norm, that is, a norm in

R™ (or an)’ and |a| a vector norm in R™ (or C"). Here we consider only
compatible norms, i.e., those for which the inequalities

|AB| < |A]-|B|, (2)
|[Ax| < |A]-[x] (3)
are satisfied.

Ezample. Let
A= layl,  |x] = max|ai|.
i3

We show that these norms are compatible. First, for C = AB,

1C1 €D laskbesl < Y lawbiy| = |A| - |B,
ik

1,5,k
which implies (2); and second, for y = Ax,

sl <D lasszsl < Ix1 Y lag| < 14] - [,
J J
and since this is true for every i, it follows that (3) holds.

Ezercise. Show that the two Euclidean norms |z|. and

|Ale =, [ laisl?
¥

are compatible.
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III. Matrices with Variable Elements. For matrices A(t) = (a:;(t))
with elements depending on ¢, the notation introduced in §10 for vectors is used,
in particular,

b b
A'(t) = (a3;(1)), /aA(t)dt=(/ ai,-(t)dt).

If A(t) is continuous, then by Lemma 10.VIII,

/a At e

(one can consider A as a vector with n? components).

b
< / |A®)] dt (4)

IV. Lemma. If the functions A(t), B(t), x(t) are differentiable (at a
point tp), then each of the following functions is differentiable, and the corre-
sponding derivative formulas hold:

(ABY = A'B+AB,

(Ax) = A'x+ Ax,
(det A)’ = Zdet(al)"')ai—lva"iaai+17"-7a'n.)- (5)
i=1

Proof. The first two formulas follow immediately from the definition of the
products. Formula (5) for the derivative of the determinant follows from the
representation (1) and the product rule of differentiation. |

V. Systems of n Linear Differential Equations. We consider a sys-
tem of differential equations of the following form:

yi=a11(t)yr +--+ aa(t)yn + bi(t)

o : : : (6)
Yp=an1()y1 +--- + Gun(t)yn + bn(t)
or, written in matrix notation,
y' = A(t)y +b(t), (6')
where
A(t) = (a;5(8)),  b(t) = (Ba(t),---,0a ()T (7

It is common practice with linear systems to denote the independent variable by
t instead of z, because in many physical applications the independent variable
represents time. Note that while ¢ is always assumed real, the functions that
appear can be either real-valued or complex-valued.
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VI. Existence, Uniqueness, and Estimation Theorem. Let the real-
or complez-valued functions A(t), b(t) be continuous in an (arbitrary) interval
J, and let T € J. Then the initial value problem

Y =A@t)y +b(t), y(r)=n (8)

has ezactly one solution y(t) for a given n € R™ or C", respectively. The
solution ezxists in all of J.
If J' is a subinterval of J, T € J' and

A< L and @) <6 in J, Inl<wv (9)

then y(t) satisfies
ly(@)] < yeHt=1 + %(e”f—fl -1) in J. (10)

The solution y(t) depends continuously on A(t), b(t), and n on every com-
pact subinterval J' C J, i.e., for every € > 0 there exists 8 > 0 such that if the
inequalities

|B(t) - A@®)I < B, [b()—c(®)|<B in T, |n—(l<B (11)
are satisfied and if 2(t) is a solution of the initial value problem

2 = Bt)z+c(t), 2(r)=¢ (12)
(B, c are continuous), then the inequality

lz(t) —y(t) <e in J (13)
holds. -

Proof. Suppose J' is a compact subinterval. Then, since a continuous func-

tion on J’ assumes its maximum, it follows that there exist constants L, § such

that (9) holds. In D = J' x R™, respectively J' x C*, f(¢,y) = Ay + b satisfies
a Lipschitz condition (4)

|(Ay +b) — (A§ —b)| < |A|ly - 3| < Lly — §1.

Therefore, by Theorem 10.VII, problem (8) has exactly one solution, defined in
all of J'. We use Theorem 12.V with f(¢,y) = Ay + b and z(t) = 0:

' — £(t,2)] = [b(£)| <6, |2(r) —y(7)| = n| <.

That is, (12.5) holds, as does the estimate (12.6), which is identical to (10).
Since in this reasoning J' can be any compact subinterval of J, the solutions
of (8) exist in all of J.
Now let J' C J be a compact interval, and let (9) and (13) hold, where it is
assumed that # < 1. Then there exists a constant ¢ such that

[B@)<e, le@®)<e, [l <q
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and thus every solution z(t) of (12) satisfies (10) with y = L = § = ¢, and hence
|z(t)] < ¢; in J'. We now apply Theorem 12.V to the two solutions y(t) and
z(t) of (8) and (12) and to f(t,y) = Ay +b. The result is

|z’ — £(t,2)] = |[(B—A)z+c—Db|
< |B-A4|-|z|+|c—b|
< Bl+a)
Therefore, (12.6) holds with v = 8, § = (1 +¢;). If 8 > 0 is chosen sufficiently
small, the inequality (13) follows. ]

VII. Complex Systems Versus Real Systems. Let
z' = B(t)z + b(t) (14)
be a complex system of n differential equations, where
z=x+iy, b=c+id, B(t) = C(t)+iD(t) with i=+-1.

By separating (14) into real and imaginary parts, one obtains the pair of differ-
ential equations

x' = C(t)x — D(t)y + c(t),

(15)
y' = C(t)y + D(t)x +d(t).
This real system of 2n equations can be written in the form
v’ = A(t)u +a(t), (15')

where u = (;ﬁ) and a= (;) are 2n-dimensional column vectors and

Cc -D
A=<D C) (16)

is a real 2n x 2n matrix. Therefore, every complex system of order n is equivalent
to a real system of order 2n of the special form (15'), (16).

VIII. Exercise. Let ¢ >0 for k=1,...,n. Show that

n
%] := chlzk|
k=1

and

1 n
|A| := max o kz_:lcklakml

define compatible norms in the sense of II.
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IX. Exercise. The Operator Norm. If |x| is an arbitrary vector
norm, then

] = max{|dx| : [x| < 1}

defines a compatible matrix norm (proof as an exercise). This norm is called
the operator norm of A. The operator norm is the smallest number -y such that
|Ax| < v|x| for all x.

Show that the norm given in VIII is the operator norm (for all A) and that
the two matrix norms defined in II are, in general, not operator norms (calculate
the operator norm of A = I).

§ 15. Homogeneous Linear Systems

A linear system of differential equations y’ = A(t)y + b(t) is called homo-
geneous if b(t) = 0; otherwise, it is called inhomogeneous. Within this section,
the term solution refers to a solution of the homogeneous system

y' = A(t)y, ’ 1)

where A(£) is continuous in the (arbitrary) interval J. By Theorem 14.VI, there
exists exactly one solution y = y(¢;7,n) for every 7 € J, n € R" or C", and
this solution exists in J.

I. Theorem. If A(t) is real-valued (complez-valued) and continuous in
J, then the set of real (complez) solutions y(t) of the homogeneous equation (1)
forms an n-dimensional real (complez) linear space.

For fized T € J the mapping

ne y(E7,m)
defines an isomorphism (a linear, bijective mapping) between R™ (C™) and the

space of solutions.

This theorem is a simple consequence of the superposition principle, which
states that every linear combination

y=ay:+---+cy:
of solutions is again a solution. It follows that
y(& A+ Xn') = Ayt mm) + XNy 7,0'),

since the functions on the left and the right are both solutions with the same
initial value An + A'n’ at 7. Therefore, the mapping 7 — y(¢; 7,7) is linear. In
particular, the zero solution y = 0 is the image of the zero vector 7 = 0. The
remaining statements are evident. ]

The isomorphism 7 — y(¢; 7, 1), which is well-defined for every fixed 7 € J,
leads immediately to some important
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II. Propositions. (a) If y is a solution and y () = O for some tg € J,
then y=0in J.

(b) A set of k solutions yi, ..., ¥k is called linearly dependent if there exist
constants ci, ..., ck with |c1| + - --jck| > 0 such that

ay1+---+ceyr=0.

Because of (a) and the superposition principle, this equation holds identically if
it holds at one point in J. The k solutions are said to be linearly independent
if they are not linearly dependent. )

(c) We recall that k vectors aj, ...,a, € R™ are linearly independent in R™
if and only if they are linearly independent when considered as vectors in C™.
A similar statement holds for real solutions of (1) when A(%) is real.

(d) For k > n, any k solutions yy, ..., yx are linearly dependent.

(e) There exist n linearly independent solutions y1, ..., y». Every such set
of n linearly independent solutions is called a fundemental system of solutions.
If y1, ..., ¥» is a fundamental system, then every solution y can be written in
a unique way as a linear combination

Y=oyt + Cn¥n. )

(f) A system of n solutions y;, ..., yn can be assembled into an n x n
solution matriz

Y(t) = (i, ¥n)-

In this notation, the n differential equations y; = A(t)y; (i = 1,...,n) can be
written as a matrix differential equation

Y' = AQ)Y; (3)

it is easy to see that this matrix equation is equivalent to the n differential
equations. The solution Y (¢) of (3) is uniquely determined by the specification
of an initial condition Y (7) = C. Here Y (¢) is a fundamental system (also called
fundamental matriz) if and only if the matrix C is nonsingular. 1t follows then
from (b) that Y (¢) is nonsingular for every ¢t € J. I Y(¢) is a fundamental
matrix, then every solution of (1) can be written in the form

y=Yc, ceR"” or C", respectively. 2

This equation is identical to (2).
(g) A special fundamental matrix X (t) is obtained from the initial value
problem

X' =A@)X, X(r)=1I 4)
Problem (4) is identical to the n initial value problems

x; = A(t)xi, xi(r)=e; (i=1,...,n). @)
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Using the solution matrix X (t), the solution to any initial value problem can be
immediately given:

y = A®)y, y(r)=n <> y@t)=X(t)n.

(h) The following extension of (f) is true: If Y(¢) is a solution to (3) and
C is a constant matrix, then Z(t) = Y (¢)C is also a solution to (3). We have
namely

Z'=Y'C=AYC = AZ.

If Y(t) is a fundamental matrix and C nonsingular, then Z(t) is again a funda-
mental matrix; moreover, every fundamental matrix can be represented in the
form Y'(¢)C with C nonsingular.

In particular, every solution matrix Y (¢) satisfies

Y(t) = X (&)Y (r), B (5)
where X (2) is the solution to (4). This follows because the right side is a solution,
and it has the correct initial values X (7)Y (1) = IY (r) =Y (7).

I11. The Wronskian. If Y(¢) = (y1,...,¥») is a solution of (3), then
its determinant ¢(z) := det Y (2) is called the Wronskian determinant or Wron-
skian!, of Y (¢).

Theorem. If A(t) is continuous in J, then the Wronskian ¢(t) := det Y (t)
of a solution of (3) satisfies the differential equation

¢ = (trA(t))g in J, (6)
where
tr A(t) = an(t) + a22(t) + -4 ann(t)

is the trace of A. Hence

o= sty ([ ix(aeas) ")

In particular, the Wronskian of the solution X (2) of (4) is given by

det X (t) = exp (/t tr A(s) ds> . (8)

T

The theorem shows that the Wronskian can be calculated from the initial value
Y (7) alone without knowledge of the solution.

1After J.M. Hoene-Wronski (1778-1853), Polish mathematician.
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Proof. By (14.5) we have

(det X(£) =) det(x1,X2,- .., Xim1, X}, Xit1, - .- , Xn)-

i=1
Hence, because x;(7) = e;, xj(T) = A(7)e;, we have
(det X(T))' = Z det(e;, ez, ...,e;—1,A(T)e;, €i41,...,€5)
i=1

= Z a;;(T) = tr A(T).

By (5), the function ¢(t) = det Y'(t) satisfies ¢(t) = ¢(7) det X (t). Hence
¢'(t) = ¢(7) (det X (2))',

and in particular,
¢'(7) = ¢(r)tr A(7).

Since this argument can be applied at every point 7, it follows that ¢(t) satisfies
the linear differential equation (6) in all of J. [ ]

Corollary. The Wronskian is either = 0 or # 0 in J. The nonvanish-
ing of the Wronskian is a necessary and sufficient condition for Y (t) to be a
fundamental matriz (this follows already from IL.(b)).

IV. D’Alembert’s Method of Reduction of Order. In general, it
is not possible to give the solutions of a homogeneous system in closed form.
However, if one solution is known, it is possible to reduce the system to a system
of n ~ 1 differential equations. If x(t) is a (known) solution of the differential
equation (1), then for the remaining solutions one makes the ansatz

0
YO = dx(®) +2(t)  with st = | ©)

Zn
(¢ scalar). This function is a solution of (1) precisely if
Y = ¢'x+ ¢x' +2' = pAx + Az, '
ie., if
7' = Az - ¢'x.

The equation for the first component is

Zaljzj = ¢'~’51, (10)
j=2
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and for the ¢th component (2 < i < n) it is
n
Z; = Zaiij - ¢’$i.
j=2

Thus, for the components z;, one obtains the differential equations

n
z; )
Zz’- = Z (aij - —’alj) Zj (’L = 2, ‘e ,'n,), (11)
: Iy
j=2
that is, a homogeneous linear system of n — 1 equations. Here it is assumed,
without loss of generality, that z;(t) # O (instead of the first component, any

other component can be chosen). If (23,...,2,) is a solution to this system,
then from (10),

1 n
o) = [ ;2 dt, - (12)

and a solution y(t) of (1) is obtained by (9).

If (11) bas been completely solved, i.e., if a fundamental system has been
found, then this procedure leads to n — 1 solutions y;, ..., Yn—1 of the original
differential equation (1). Combining these solutions with x gives a fundamental
system for (1).

To prove the linear independence of these n solutions, let
Vi =X + 2; (it=1,...,n—1)
and consider the equation
X+My1+ -+ Apm1¥Ya-1 = 0.

Since the first component of each z; vanishes, the first component of this equa-
tion, divided by z,, reads

A+ Mdr+ -+ A1y =0.
Multiplying this equation by x and subtracting from the previous one gives
AzZy+ -+ Ap12Zno = 0.

Therefore, since the z; are linearly independent, A; = -+ = Ap,—1 = 0, and
consequently A = 0. | |
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V. Example. The system

1 1
Y= TV~ U2 n -1
Alt) =
L1 1 2
2= gh + el Z 7

has the solution

x(t) = (—t) .

Here (11) reduces to a single equation for 25(t) = 2(t),

, (2 t) 1
Z2=-—=)z= -z
t 12 t

One solution is z(t) = t. We choose the basic interval to be J = (0,00). By
(12), then,

MQ=/$&Q#=—mL

Therefore, in view of (9),

0 —tInt
y(t) = —x(t)Int + (t) = (t +tlnt>

is another solution of the original system. The system of solutions
Y(t) = (x.y) 12 —#2Int b oY) 10 .
t)=(x,y) = wit = 3
y —t t+tlnt -1 1 ( )

is a fundamental system. If the second column in Y'(t) is added to the first and
the second is left unchanged, then one obtains the identity matrix for ¢ = 1, i.e.,

t2(1-Int) —t?Int
X(t)=(x+y’y)=< tint t(1+1nt))

is a solution with X (1) = I.

VI. Exercise. The Adjoint Equation. Let C* = CT be the complex
conjugate transpose of the matrix C, that is, ¢j; = ¢;;. If CC* = I, then C is
called unitary. The star operation obeys the rules

(BC)=C*B*, (C)™'=(CTY), (C)=C,

and (Cy,z) = (y,C*z) for y,z € C", where (a,b) = a1b; + - + anb, is the
inner product in C". Further, if C' = C(t) is differentiable, then

@) =(c@).
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The equation adjoint to equation (1), y’ = A(t)y, is given by
z' = —A*(t)z. (14)

Similarly, the differential operator M corresponding to (14), that is, Mz =
z' + A*(t)z, is called the adjoint operator to the operator L, which corresponds
to (1) and is given by Ly = y’ — A(t)y. The adjoint to M is again L. The
operator L is called self-adjoint if L = M, ie., A= —A*.

(a) Let Y'(t) be a fundamental matrix for equation (1). Then Z(t) is a fun-
damental matrix for equation (14) if and only if Y*(¢)Z(t) = C is a nonsingular
constant matrix.

(b) The Lagrange identity for y(t),z(t) € C*(J) reads

(Ly,2) + (v, M2) = & (3,2).

(c) If L is self-adjoint, 7 € J, and Y (t) is a fundamental matrix for (1) with
the property that Y(7) is unitary, then Y'(¢) is unitary for all ¢ € J.
Hint for (a): (Y*Z) =Y*A*Z+Y*Z' =0 2Z' = -A*Z.
Remark on the Real Case. If C is real, then C* = C. In this case unitary
matrices are called orthogonal. If (1) is a real system, then L is self-adjoint if
and only if A(t) is skew-symmetric.

§ 16. Inhomogeneous Systems

As earlier, A(t), b(t) are defined and continuous in an interval J (real- or
complex-valued). ‘

The following theorem gives the relationship between solutions of the inho-
mogeneous differential equation

y' = A(t)y + b(t) 1

and solutions of the corresponding homogeneous differential equation.

I. Theorem. Lety(t) be a fized solution of the inhomogeneous equation
(1). If x(t) is an arbitrary solution of the homogeneous equation, then

y(8) = ¥(t) +x(t)
is a solution of the inhomogeneous equation, and all solutions of the inhomoge-

neous equation are obtained in this way.

As in the case n = 1, the proof rests on the simple fact that the difference
between two solutions of the inhomogeneous differential equation is a solution
of the homogeneous equation. |

Thus our task is to find just one solution of the inhomogeneous equation.
We make use of a procedure that originated with Lagrange, the
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II. Method of Variation of Constants. If Y(t) is a fundamental ma-
trix to the homogeneous differential equation, then by 15.II.(e), every solution
of the homogeneous equation can be represented in the form Y'(t)v, where v
runs through all (constant) vectors. In the method of variation of constants the
constants (v1,...,v,) are “varied,” i.e., replaced by functions of ¢,

z(t) =Y (t)v(t).

The function v(¢) is to be determined such that z(t) is a solution of the inho-
mogeneous differential equation (1). Substituting z(t) into (1) gives

2 =Y'v+YVv =AYv+ YV = AYv +b,
which leads to the condition
Y(t)v' = b(t). (2)

Since Y is a fundamental matrix, the Wronskian detY is # 0. Therefore, the
inverse matrix Y ~! exists and is continuous in J. Multiplying equation (2) on
the left by this matrix and integrating gives

v(t) = v(T) + / Y ~1(s)b(s) ds.

For instance, the solution z(t) with initial value z(7) = 0 is given by
t
4n=w@/Y*@u@u 3)

III. Theorem. The initial value problem (A(t), b(t) € C(J), T € J)
Yy =A(t)y +b(t), y(r)=mn

has the (uniquely determined) solution

y(®) = X@n+ [ XOX(6)bls)ds, @

where X (t) is the fundamental matriz of the homogeneous differential equation
with X(1) = 1.

i

Proof. The first summand on the right side is a solution of the homogeneous
equation with the initial value 77, and the second summand is a solution of the
inhomogeneous equation with initial value O (see (3)). |

Remark. If Y(t) is a fundamental matrix, then by (15.5) Y (¢) = X ()Y (1),
whence Y1(¢) = Y~}(7) X ~1(t), and it follows that
Y)Y 1(s) = X ()X (s).
Thus a representation of the solution y to the initial value problem in terms of
Y (t) is given by

y&) =Y @)Y () + / Y (t)Y ~(s)b(s) ds. 4)
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Ezxample.
, 1
h=7n-nth ¢
b(t) = t>0).
L, “<_t2) t>0)
y2=t‘§y1+zy2—ta

The general solution to the corresponding homogeneous equation was found in
15.V. Using the well-known formula for the inverse of a 2 x 2-matrix,

B a b B-1 1 d -b
—cd=> Tad-bc\—¢ 4/’

and (15.13), one can easily calculate Y ~1(t). The resulting matrix is

t(1+Int) t2Int
Y-l(t)=l3(( ) )
13 t 12
Hence
v10b 1 [/lnt+1-¢*Int
wpe) = (. )

NNy

t t2~1+4(4—2t2 +2Int)Int
/ Y~ (s)b(s)ds )
1 4lnt —2t2 +2

and therefore from (3),

Dev® [ v-Ls)bls) ds = - B~ 1+ 2t -2k
z(t) = ()/1 (s)b(s) S_Z<t(3—3t2+21nt+2]n2t)).

Thus we have found a particular solution of the inhomogeneous differential
equation with initial value z(1) = 0.
IV. Exercise. Show that the real linear system
z’ = a(t)z - b(t)y,
¥ =b(t)z +a(t)y
can be reduced to a single complex linear differential equation
2 =c(t)z

for z(t) = z(t) +iy(t). Derive a linear differential equation for v(t) = 2(t)z(t) =
z2(t) + y2(t).
Use this method to solve the system

z' = zcost —ysint,

y' = zsint + ycost.
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In particular, determine a fundamental system X (t) with X (0) = I and compute
its Wronskian det X (t). Show that every solution is periodic. What is the
period?

Sketch the orbit z(t) = (z(t),y(t)) of the solution with initial values
(z(0),¥(0)) = (1,0) in the zy-plane. Determine v(t) = |2(t)|> and find two
bounds 0 < a < v(t) < 8 for this solution.

V. Exercise. Determine the general solution of the system
g = (3t — 1)z — (1 — t)y + te*,
Y =—(t+2)z+ (t—2y—e'.
Hint. The homogeneous system has a solution of the form (z(t),y(t)) =
(8(t), —6(t))-
Supplement: L!-Estimation of C-Solutions
We consider solutions in the sense of Carathéodory of the problem
y =A(t)y+b(t) in J=[rr+d, y(r)=n (5)

under the assumption that (all components of) A(t) and b(t) belong to L(J).
According to Theorem 10.XII, there exists a unique C-solution in J, and it is
not difficult to show that the earlier results, in particular Theorems 15.I and
15.111 for the homogeneous system and the representation formula (4) for the
solution of problem (5), are also valid under these assumptions.

Our aim now is to establish pointwise estimates on y(t) and on the difference
y(t) — z(t), where z(t) satisfies

z'=B(t)z+c(t) in J, z()=¢, (6)

in terms of integral estimates of the given functions. Note that in the cor-
responding Theorem 14.VI pointwise bounds (and not L! bounds) on these
functions are required.

V1. Estimation Theorem. Assume that A, B, b, ¢ belong to L(J) and
that |A(t)|, |B(t)| < h(t) € L(J). Then the solutions y(t) of (5) and z(t) of (6)
satisfy

i
YOO <l + [ e b(s) a5, ™
T
where H(t) = f: h(s)ds and

Iy () — 2(t)]e™ (®)
<lm—¢l+ / e HO [b(s) - c(s)| + |A(s) — B(s)] ly(s)|} ds.
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For the mazimum norm ||f||ec = maxy |£(t)| and the Ll-norm ||f||p: =
[T |£(t)| dt, the estimates

llyllo < C(nl+1bllz:), € =exp(||hllL), (9)

ly —zlle < Ci(ln—¢l+|Ib—cllzs +{[A~ Bl[Ls) (10)

hold, where C; depends only on |7|, ||k||z2 and ||b]|z:.

Proof. By 10.XVI,

ly@® < ly'(8)] = A®)y +b(£)] < R()ly (@) + [b(2)]-

Hence ¢(t) = |y(t)|e~H#® satisfies ¢'(t) < e~ H®|b(t)|, ¢(7) = |n|, which leads
to (7) after integration.
The difference u = z — y satisfies

u'=Bz+c— Ay—b=Bu+(c—b)+(B-A)y.

The estimate (7), applied to u (with 9 — ¢ instead of 7, B instead of A, and
(c —b) + (B — A)y instead of b) gives (8). B

Our next theorem deals with the linear case of the comparison theorem
10.X1II in the context of C-solutions.

VII. Positivity Theorem. Assume that the real matriz A(t) € L(J),
J = [r,7 + a], is essentially positive; i.e., a;;(t) > 0 for i # j. Then, for
u € AC(J),

u' > A(t)u a.e in J, u(r) >0 implies ut) >0 in J.

Moreover, if ui(t;) > 0, then u;i(t) > 0 for t > t;.

Proof. Let |A(t)] < h(t), where | - | is the maximum norm, and H(t) =
J! h(s)ds. Then B(t) = A(t) + h(t)I > 0, i.e., b > 0 for all 4, 5, and |B(t)| <
2h(t). The function w(t) = e ®u(t) satisfies w'(t) > B(t)w, and the function
o= (p,p,--.,p) with p(t) = e2H®) also satisfies o' > B(t)o; both inequalities
are easily established. Hence w, = w + ¢ satisfies w. > Bw, and w,.(0) > 0.
As long as w,(t) > 0, we have w/(t) > 0, and this shows that w(t) is increasing
and positive in J. Since ¢ is arbitrary, w(t) is increasing, and both propositions
about u(t) are obtained as a result. E

This theorem can be used to give an alternative proof for the comparison
theorem 10.X1II that is valid for C-solutions. As before, Pu = u’ —f(t, u) is the
defect of u.
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VIII. Comparison Theorem. Suppose f(t,y):JxR"™ — R" is quasi-
monotone increasing in 'y and satisfies a Lipschitz condition in the mazimum
norm | - | with h(t) € L(J),

£(t,y) - £(t,2)| < A(t)ly —2| for y,z€R™
Then, for v,w € AC(J),
v(r) < w(r) and Pv< Pw ae in J implies v<w in J.
If vi(t1) < wi(t1) for an index i and t; € J, then v; < w; for t > t,.
Proof as an Ezercise. Hint: Show that for y,z € R", the difference f(t,y)—

f(t,2) can be written in the form A(y — x) where A is essentially positive and
bounded in norm by h(t), and apply VII (use a decomposition of the f-difference

as given for n = 2 by g(y1,92) — 9(21, 22) = [9(31,¥2) — 9(21,92)] + [9(21,92) —
9(21, Z2)]).

§ 17. Systems with Constant Coefficients

I. The Exponential Ansatz. Eigenvalues and Eigenvectors. In
this section suppose A = (a;;) in the homogeneous linear system

y' = Ay 1)
is a constant complex matrix. Solutions can be obtained using the ansatz

cr et

yit)y=c-M=| : |, (2)
c et

where ), c; are complex constants. Substituting y = c - e into equation (1)
leads to

y' = Ace? = Ace™;
i.e., y(t) is a solution of (1) if and only if
Ac = Ac. (3)

A vector ¢ # 0 that satisfies equation (3) is called an eigenvector of the
matrix A; the number A is called the eigenvalue of A corresponding to c.

We recall a couple of facts from linear algebra. Equation (3), or what
amounts to the same thing,

(A= ADc=0, 3)
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is a linear homogeneous system of equations for ¢. This system has a nontrivial
solution if and only if

a1 — A  ax .- G1in
a2 Gx—AX -+ G2n
det(A—-A)=| _ _ =0 (4)
anl an2 I

in other words, the eigenvalues of A are the zeros of the polynomial
Po()) = det(A — A\I), (5)

called the characteristic polynomial. This polynomial is of degree n, as one can
see, for instance, from the definition (14.1) of a determinant. Thus it has n
(real or complex) zeros, where each zero is counted according to its multiplicity.
An eigenvector ¢ # 0 corresponding to a zero A (an eigenvector is # 0 by
definition) is obtained by solving the system (3’). It is determined only up to
a multiplicative constant. The set o(A) of eigenvalues is called the spectrum of
A.

II. Theorem (Complex Case). The function (A, c, A complez, c #0)

y(t) =c-eM
is a solution of equation (1) if and only if A is an eigenvalue of the matriz A
and ¢ is a corresponding eigenvector.

The solutions

yi(t) = etitc; (t=1,...,p)

are linearly independent if and only if the vectors c; are linearly independent.
In particular, they are linearly independent if all eigenvalues Ay, ..., Ap are
distinct.

Thus if A has n linearly independent eigenvectors (this is the case, for ez-
ample, if A has n distinct eigenvalues), then the system obtained in this manner
is a fundamental system of solutions.

Proof. By the isomorphism statement proved in Theorem 15.I, the solutions
y; are linearly independent if and only if their initial values y;(0) = c; are lin-
early independent. The statement that p eigenvectors corresponding to distinct
eigenvalues are linearly independent is certainly true for p = 1. It is proved in
general by establishing the inductive step from p to p + 1. If the eigenvectors
ci,...,Cp are linearly independent and if c is an additional eigenvector corre-
sponding to the eigenvalue A and A # A; (here and in the following equations i
runs through the numbers 1 to p), then, as we will now show, a representation
of the form

c= E a;c;
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is not possible. By applying A to both sides. one would obtain
Ac = Z a; AiCq,

and because such representations are unique,
Aa; = Ao, e, o;=0.

III. Real Systems. Obviously, the theorem also holds for real systems.
In this case, however, one is interested in real solutions. Here one runs into the
difficulty that a real matrix may have complex eigenvalues, which lead in turn
to complex solutions y(t). Now, it is immediately obvious that for real A both
the real part and the imaginary part of a complex solution are real solutions
to (1). Thus from a complex eigenvalue one obtains two real solutions. Note,
however, that if the complex quantities A and c satisfy equation (3), then their
complex conjugates X and € do also. Therefore, X and € are also an eigenvalue
and eigenvector of A and lead to a solution ¥ = & - e*, which is the complex
conjugate to y = ¢ - e**. The decomposition of the complex conjugate solution
into real and imaginary parts leads to exactly the same two real solutions.

IV. Theorem (Real Case). IfA=_p+iv (v#0) is a complez eigen-
value of the real matriz A and ¢ = a+ ib is a corresponding eigenvector, then
the complez solution y = ce* produces two real solutions:

u(t) = Rey = e**{acos vt ~ bsinvt},
v(t)=Imy = e**{asinvt + bcosvt}.

Suppose there are 2p distinct, nonreal eigenvalues
ALy dps Apb1 = AL, A = Xp

and q distinct real eigenvalues \; (i =2p+1,...,2p+q). If for the 2p distinct,
nonreal eigenvalues one constructs 2p real solutions

u; = Rece™®, v; =Imcet (i=1,...,p)

in the manner described above and q real solutions y; corresponding to the q
distinct real eigenvalues using (2), then the resulting 2p+q solutions are linearly
independent.

A corresponding result also holds if some of the A\; are equal, i.e., if there
are multiple eigenvalues. If the 2p + g corresponding eigenvectors are complexr
linearly independent, then the same is true for the corresponding 2p + q solu-
tions of the form (2), and it remains true for the 2p + q real solutions obtained
after splitting into real and imaginary parts. In particular, if A has n linearly
independent eigenvectors, then one obtains a real fundamental system.
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The independence of these real solutions follows from the fact that the
original solutions y; = c;e*? (i =1,...,2p + g) are linearly independent by
Theorem II and can be represented as linear combinations of the above real
solutions; cf. 15.1L.(c).

V. Example.
1= Y1 — 2y 1 -2 0
ys=2y1 — Y3 A=|2 0 -1
y3=4y1 — 292 — ¥ 4 -2 -1
We have
1-X -2 0
P(A)=| 2 =X -1 |=(1-N+r+2).
4 -2 -1-2A
The eigenvalues are
A1=_%+i§, /\2=—%—14, da=1.

The corresponding eigenvectors are solutions to the system (3'). For example,
the equation for ¢; = (z,y,2)" is

%—i—@ -2 0 z 0
R y |=]0|[,
4 ~2 -1 z 0

which has a solution
o= +iY,2,4)7.
It follows then that c, = & = (3 — ¥

2 ~175
simple calculation gives c3 = (1,0,2)T. Taking the solution

,2,4)7 is also an eigenvector. Another

)’1(t) =cp* e(_%"'iAzﬁ)t

and separating into real and imaginary parts leads to the two real solutions

_ (g ﬁ\ -
2 2
u (t) = et || 2] cos 4t ~ 1] 0 |sin —gt
| \4 0 -
_ 2 .
A [
1
vi(t)=e"2* || 0 | cos 4t +]2|sin 4t
[\o VN
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which, combined with the solution

ys@)=1]0 e,
2
constitute a real fundamental system.
V1. Linear Transformations. We consider the results obtained above

from a somewhat different point of view. If C is a nonsingular constant matrix,
then the mapping

y=Cz,z2=C"1y (det C #0) (6)
transforms a solution y(t) of (1) into a solution z(t) of the system

2 =Bz, with B=C1AC, (7
and conversely.

Suppose now that A has n linearly independent eigenvectors ¢y, ..., cp. If

one sets

C=(c1,.--,¢Cn),
then

AC = (Acy,...,Acy) = (M, - .-, Ancn) = CD,
where

D = diag (A1,...,An) (i.e., dii= X, dij =0 otherwise),
is a diagonal matrix. Thus for this choice of C,

B=C'AC=D,

and then (7) reads simply
Zi = )\121
2h = Anzn.

It is easy to find a fundamental system of solutions for this system, namely

et 0 ... 0
0 g2t ... 0
Z(t)=(zlx"’)zn)= . . . . . (8)



180 IV. Linear Differential Equations

Going back to y = Cz, we obtain the fundamental system of Theorem II,
Y =CZ = (Czy,...,Cz,) = (c1e™,...,cre*t). (9)

Summary. In the case where there are n distinct eigenvalues and, more gen-
erally, in the case of n linearly independent eigenvectors there is a fundamental
system of solutions of the form (2) (the simplest example, A = I with eigen-
vectors ey, ..., €, shows that it is also possible to have n linearly independent
eigenvectors in the case of multiple zeros of the characteristic polynomial).

VII. Jordan Normal Form of a Matrix. In order to handle the gen-
eral case, we make use of a result from matrix theory without proof. It says
that for every real or complex matrix A there exists a nonsingular matrix C (in
general, C will be complex), such that B = C~1AC has the so-called Jordan
normal form

N

Jk

where the Jordan block J; is a square matrix of the form

AN 1 0 0 - o 0

A1 0 0

0 0 X 1 . 0
L= o (1)

0 0 -« o X 1 0

0 0 -+ -~ 0 XN 1

0 0 - - 0 0 X\

with r; rows and columns; outside of the Jordan blocks, B consists entirely of
zeros. Here r1 + -+ -+ rp = n, and

Pa() = (=1)" A = A)™ -+ (A = M)

Note that the main diagonal of B consists of eigenvalues of A and that each
block is made up of one and the same eigenvalue. However, the same eigenvalue
can appear in more than one block; for example, the matrix I is in Jordan
normal form (k=n,r; =1, A; =1).
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The system corresponding to a Jordan block J with r rows and diagonal
element A is given by

(7 =Xz + 1o
zh =Aza+z3
x' = Jx, or ¢ : (12)
Th_y=ATpo1 + Tp
L T, =)z,

and can be easily solved (one begins with the last equation). The matrix

M teM LiZeM ... (r_ll)!tr—leAt\
0 eAt teAt . (r_lz)ltr—2e,\t
At 1 r=3.2
X(t) = 0 0 e o eant e ¥ (13)
0 0 0 et

is a fundamental matrix for equation (12) with X (0) =1I.

Proceeding in this way, a fundamental matrix Z(t) for equation (7) can be
constructed if B is a Jordan matrix; one has simply to insert the corresponding
solution (13) into each Jordan block. For example, if

o o »
o > =
> R o
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then the corresponding fundamental matrix Z(t) with Z(0) = I reads

( )

eAt teAt _;_t2ekt

0 eAt teAt

0 0 eMt

Z(t) =

eut teut

\ Y
Thus, if B = C71AC has Jordan normal form, then each column of Z(t) is a
solution of (7) of the form

tm

.
z(t) = (0,-~-,0, ;n—!e’\t,...,te’\t,e’\t,O,...,O) ,

where ) is an eigenvalue of A (note that 0(A) = o(B)). Consequently, y = Cz
is a solution of equation (1) of the form

y(t) =pm(t)e  with  pm(t) = @F(),....27 )7,
where p™(t) is a polynomial of degree < m.

VIII. Summary. For every k-fold zero A of the characteristic polyno-
mial there exist k linearly independent solutions

y1 = po(t)e™,...,yr = Pr-1(t)e*, (14)

in which every component of

Pm(t) = (07 (t),- .., 0™ ()T (m=0,1,...,k—1)

is a polynomial of degree < m. If carried out for every eigenvalue, this con-
struction leads to n solutions, which form a fundamental system.

If A is real, then a real fundamental system is obtained by taking, in case A
is nonreal, two real solutions u; = Rey;, v; = Imy; from each of the k solutions
y: of (14) and ignoring the corresponding k solutions for the complex conjugate
eigenvalue X.
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The degree of the polynomials that arise can be determined from the Jordan
normal form. In the previous example, where B is a Jordan matrix with n = 6,
there is a solution y = p(t)e* with degree p = 2, but no solution with higher
degree, and this is true even if A = p = v. If 4 = v # A, then there exists a
solution y = p(t)e”* with degree p = 1, but no solution with degree p = 2, etc.
The following terminology is useful here.

Algebraic and Geometric Multiplicity. If A is a k-fold zero of the
characteristic polynomial of A, then the number m(A) := k is called the algebraic
maultiplicity of the eigenvalue, and the dimension m’()) of the corresponding
eigenspace, that is, the maximal number of its linearly independent eigenvectors,
is called the geometric multiplicity. Here 1 < m'()) < m(A\) < n. If m(}\) =
m'()), the eigenvalue is called semisimple. In this case, the number A appears
m()) times in the main diagonal of the Jordan normal form, but there is no 1in
the superdiagonal, and in the corresponding m(A) solutions (14) the p,(t) are
constant polynomials (namely the eigenvectors). If this is true of all eigenvalues,
then the Jordan matrix corresponding to A is a diagonal matrix, and the matrix
A is said to be diagonalizable.

The calculation of the solutions is easily accomplished once the Jordan nor-
mal form B = C~!AC and the transformation matrix C have been determined.
However, the k = m()) solutions belonging to the eigenvalue A can also be ob-
tained, a step at a time, by first determining the corresponding eigenvectors ¢
that lead to the solutions y = ce*t. Then, one after another, the ansétze (a, b,
...€C)

y = (a+ct)e*, y = (a+ bt +ct?)e, ...
are applied until m()\) solutions have been found. By equating coefficients of

like terms, one sees that the coefficient ¢ of the highest power of ¢ is always an
eigenvector.

IX. Example. n=2,y(t) = (z(t),y)",
T'=z— 1 -1
Y A .
y =4z -3y 4 -3

det(A— M) =22 +2x+1

From

it follows that A = —1 with algebraic multiplicity m(A) = 2 and

2 -1
A—/\I=A+I=( )
4 =2
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The corresponding homogeneous system (3’) has only one linearly independent
solution,

()

Thus we have m/()\) = 1. The corresponding solution is

()-0)-

A second, linearly independent, solution can be obtained using the ansatz
T\ a+ bt
= et
y c+dt
We have that
T b—a-—1bt a+bt
= et=A et
v d—c—dt c+dt

holds if and only if

A=) = 405

The first equation has the eigenvector ¢ as a solution, i.e., b =1, d = 2. The
second equation is satisfied, for example, if a = 0, ¢ = —1. The corresponding
solution

b))

is linearly independent from the first solution.

X. Real Systems for n = 2. We consider the real system for y =
(z,9)7

’
T z a;; a
=A(), 4o (o o2 ’ o as)

() Y a1 Q22
under the assumption D = det A # 0. This implies that A = 0 is not an
eigenvalue. The corresponding characteristic polynomial

P(\) =det(A~A)=X2—-SA\+D with S=trA=a; +as

has zeros

A=

(S—\/S2—4D), p=

N
N =

(5+V&=1D).
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Real Normal Forms. Our first goal is to show that every real system (15)
can be reduced by means of a real affine transformation (6), (7) to one of the
following normal forms:

A0 Al o w
R(/\,u)=(0 M>,Ra(/\)=<0 /\),K(a,w)=<_w a).

Here A, , @, w are real numbers with x4 # 0 and w > 0. If $2 > 4D, we
have the real case (R). If S < 4D, the complex case (K) occurs, while if
52 = 4D, the case (R) or (R,) occurs depending on whether A = p has two
linearly independent eigenvectors. We construct now the affine transformation
C.

Case (R). There are two (real) eigenvectors ¢, d with Ac = Ac, Ad = pd.
If C = (c,d), then C7*AC = R(A, p); cf. VL

Case (R,). We have A = p and only one eigenvector c. However, as is
shown in linear algebra, there is a vector d linearly independent of ¢ such that
(A — AI)d = c. The matrix C = (c,d) again satisfies C™AC = R,(\).

Case (K). p = X; hence Ac = Ac and A¢ = A&. The matrix (c, €) transforms
the system to the normal form B = diag (), \). However, we want to find a real
normal form. This can be obtained as follows.

Let c=a+1ib, A = a +iw with w > 0. Separating the equation Ac = Ac
into real and imaginary parts leads to

Aa=o0a—wb a w
< A(a,b) = (Aa, Ab) = (a, b) .
Ab=ab +wa -w a
Since c, € are linearly independent and can be representedin terms of a, b,
it follows that a and b are also linearly independent; i.e., the matrix C = (a, b)
is regular and transforms the system to the real form K(a,w). | |

We investigate now each of these cases and construct a phase portrait of
the differential equation, from which the global behavior of the solutions can be
seen. If equations (1) and (7) are coupled by the transformation (6), then their
phase portraits are also coupled by the same affine mapping y = Cz of R”,
which transforms straight lines into straight lines, circles into ellipses, ..., but
preserves the characteristic features such as the behavior as t — co. In this way
we obtain an insight into the global properties of all systems with det A # 0.

(a) A = R(\p) with A £ p < 0. The solutions of the system z' = Az,
y' = py are given by (z(t),y(t)) = (ae™*, be*t) (a, b real), their trajectories by

z

(_)“=(%)A (6,b#0 with z/a,y/b> 0).

a

The special cases @ = 0 or b = 0 are simple. All solutions tend to 0 ast — oo. In
the case A = p, the trajectories are half-lines; in the general case, corresponding
power curves. The origin is called a (stable) node.

(b) A= R,(A) with A < 0. From z’ = Az +y, ¥’ = y, one obtains

z(t) = ae™ + bte™, y(t) = be*t.
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y y

=
7

<
Stable nodes. 4 = R(), \) with A < 0 (left) and A = R(\, p) with A < u <0,
A p =2 (right)

y

\

s

$ z
\\ Stable node for A = R,(A\) with A <0
For a = 0 (this means that (z(0),y(0)) = (0,b)), we have z = ty and At =
log(y/b). Thus the trajectories are given by

Az:ylog(%) for b£0  (with %>0).

The positive and negative z-axis are also trajactories. Here, too, all solutions
tend to the origin as t — oo, which is again called a (stable) node.

() A= R(\ ) with A < 0 < p. The solutions and their trajectories are
determined formally as in (a). However, the phase portrait has a completely
different appearance. There are only two trajectories that point toward the
origin (b = 0). All of the other solutions (with (a,b) # 0) tend to infinity;
z2(t) + y2(t) — oo as t — oo. The origin is called a saddle point.
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<
Nk

Saddle point. A= R(\, u) with A < 0 < g, A/ = —2 (left) and A = ((1) —g)
(affine distortion, right) —

<
<

i
N

).
A4

=7
@

Center for A = K(0,w) (left) and A= (:3 153) (affine distortion, right)

(d) A= K(a,w) with a < 0. It is easy to check that '

(z1,71) =e*t(coswt, —sinwt),

(z2,y2) =e*t(sin wt, coswt)

are two solutions of (15), from which one can construct a fundamental system
X (t) with X(0) = I. Using complex notation, in which complex numbers are
identified with pairs of real numbers, the above solutions are represented by
21(t) = e®*e™ %t and 25(t) =iz (¢). In this notation, the form of the trajectories
can be read off.

If o = 0, the trajectory is a circle around the origin, which is traced out in
the negative sense with circular frequency w. If @ < 0, then an additional factor
et is included and the trajectories are spirals that approach the origin. In the
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Y

Stable vortex for A = K(a,w) with a <0

case a = 0, the origin is called a center, in the case a < 0 a (stable) vorter.

(e) Switching from t to —t. If (z,y) is a solution of (15), then the pair of
functions (Z(t), §(t)) := (z(—t),y(—t)) is a solution of a related equation, in
which A is replaced by —A (and consequently A, u are replaced by —\, —p).
The functions (z,y) and (%, §) have the same trajectories, only the direction of
the arrows is reversed. This takes care of all possible cases.

(f) Summary. The following table summarizes the properties of the origin
in each of the various cases. See Exercise XII for the case D = det A = 0.

52 >4D, D>0, S<0/| stable node [asymptotically stable]
" " S > 0 | unstable node | [unstable]
" D <0, " saddle point [unstable]

S? < 4D, " S < 0 | stable vortex [asymptotically stable]
" " S =0 | center [stable]

" " S >0 | unstable vortex | [unstable]

The entries in brackets are explained in the next section.

XI. Stability. We consider the homogeneous linear system (15.1)
y=A@t)y in J=[a,00)

and assume that A(t) is continuous in J. The zero solution y(t) = 0 is called
stable if all solutions are bounded in J, asymptotically stable if every solution
tends to 0 as ¢t — 0, and unstable if there exists a solution that is unbounded
in J. If the zero solution is stable and if X (¢) denotes the fundamental system
with X (a) = I, then there exists K > 0 such that |[X(t)| < K fort > a. If y
is the solution with initial value y(a) = c, then |y(¢)| = |X (t)c| < K|c|. Thus
stability means, roughly speaking, that solutions with small initial values remain
small for all future time. The differential equation y’' = A(t)y is also sometimes
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called stable, asymptotically stable, or unstable, when the zero solution is stable,
asymptotically stable, or unstable, respectively.

If the matrix A is constant, then the Summary VIII gives us a complete
description of the stability behavior of the zero solution. The zero solution is

asymptotically stable | if ReA < 0 for all A € o(A)

stable if Re <0 for A € o(A) and if m’/(X) = m(})
for all eigenvalues A with ReA =0

unstable in all other cases, i.e., if there exists a A €
o(A) with ReA > 0 or with ReA = 0 and
m/(A) < m(A)

In the first two cases, there exists a fundamental matrix Y (¢) by VIII, which
tends to 0 as ¢ — 0 or remains bounded, respectively. The same holds then
for an arbitrary solution, since every solution can be represented in the form
y(t) = Y)Y Y(a)y(a). In the third case, there exists an unbounded solution
y = ce* with Re A > 0 or y = p(t)e™* with real w and degree p > 1.

Egercise. Let A(t) be a complex matrix satisfying
Re (A(t)y,y) < ¥(t)lylZ for t>aand y €C",

where (-, -) is the usual scalar product in C*; cf. 28.11.(a). Let h(t) = fat v(s) ds.
Show that if h(t) is bounded, the zero solution is stable, and asymptotically
stable if h(t) — —o0 as t — oo (holds also for real matrices).

Hint: Derive the inequality ¢’ < 2+(t)¢ for ¢(t) = |y|2.

XII. Exercise. Investigate the two-dimensional linear system (15) in the
case D =det A=0.

(a) Determine the normal forms that arise.

(b) Solve the corresponding systems, determine the critical points, and
sketch their phase portraits. )

(c) Solve the system z’ = 2z — 4y, ¥’ = —z + 2y (include a phase portrait).

XIII. Exercises. Determine a real fundamental system of solutions for
the following systems:

(@) =z’ =3z + 6y, (b) z’'=8z+y,
y = -2z — 3y. y = —dz + 4y.
(¢) o'=z—-y+22 (d) ¢/=-z+y-—2
Y =-z+y+2z Y =2z -y+ 2z

Z=z+y. 2 =25+ 2y —2z.
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§ 18. Matrix Functions. Inhomogeneous
Systems

I. Power Series of Matrices. In this section, the constants and matri-
ces can be complex. If B is an n X n matrix and p(s) is the polynomial

p(s) =co+ 154 - + cs®, (1)
then p(B) is defined to be the matrix

p(B) =col + c;B+ -+ +c;.B. (2)
In particular, for B = At (i.e., bij = a4;t),

p(At) = oI + clAt-'i- oot cp AREE
The derivative of this matrix with respect to t is given by

2 p(At) = 4p'(41), 3)

where p'(s) is the derivative of p(s) (note the analogy to the chain rule).
We now consider infinite series of n X n matrices Cj,

-

k=0

Convergence is defined as usual: S, = Cop+---+Cp, —» C as p — o0, i.e,
|Sp, — C| — 0, where | - | is a compatible matrix norm; cf. 14.I. This is true if
and only if with the notation Cy = (cg-c)), each of the n® series ), cg-c) converges
to ¢,;. We say that the matrix series is absolutely convergent if the real series
Y~ |Ck| converges, or, equivalently, if each of the n? scalar series is absolutely
convergent. This equivalence follows from the fact (10.III) that for each norm
there are constants o, 3 > 0 such that

afbis| < |B < B byl- (4)
In particular, every power series
o0
f&) =) es®  (sl<7) (1)
k=0
with radius of convergence r > 0 generates a matrix function

(=]
f(B)= chBk (absolutely convergent for |B| < 7). (2
k=0

To be precise, if |B| =: s < r, then, since |BC| < |B||C| by (14.2),

|B2| < |B|2 = 321---1|Bk| < sk)



§18. Matrix Functions. Inhomogeneous Systems 191

and hence Y |cxB¥| < co. Thus
f(At) = coI + 1At + A% + - -
is absolutely convergent for

T
t —_ =t
l|<|A| 0

and uniformly convergent in every compact subinterval of (—ty,%p). Since the
formally differentiated series is again uniformly convergent, one can differentiate
f(At) term by term and obtain, similar to (3), the formula

d y /
ZH(At) = Af'(At). ®)

II. Example. The Exponential Function. The series

B? B®
B _ _ ...
e =I+B+ o + 3l +

converges absolutely for all B. Here we have
(eAt)l = AeAt (3//)

by (3'). This is a really surprising result: We have found a fundamental matrix
for the linear system

y =4y (5)
in a second way, independent of §17, namely
X(t)=e* with X(0)=1I. (6)

Formally this result agrees completely with the one-dimensional case: The so-
lution of 2’ = az, £(0) = 1 is z(t) = e®. Additionally, we note that one obtains
the series for X (t) by writing the initial value problem for X (t) as a matrix
integral equation

X(t)= I+/°tAX(s)ds
and applying the method of successive approximations

Xo=1, Xk+1=I+/otAXk(s)ds (k=0,1,2,...).
A simple calculation shows that

Xty =TI+ At+.--+ %A"t",

which is the kth partial sum of the series for eAt.
We are going to derive some properties of the exponential function.
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III. Lemma. We have
(a) eB+C =eB.eC if BC = CB;
(b) €C7'BC = C-1eBC if det C # 0;
(c) ediag(xl,...,xﬂ) = diag (e*l,...,e'\"),
where D = diag (u1,...,4n) means that di; = p;, and di; = 0 for i # j.

Proposition (a) is the addition theorem; it does not hold in general.

Proof. Because of the absolute convergence of the series for e and e,
these series can be multiplied termwise (this actually involves the termwise
multiplication of n? scalar series), and one obtains

kn—k
B0 z(B'*‘C) ZZBC
n=0 n=0 k=0 k'(n k)l
— BP
o yp
p=0 q—O
This proves (a). To prove (b), it can be shown by induction that

(C7'BC)*=C'B*¢ (k=0,1,2,...)

and hence
S° Loy = ¢ (z %B") C (=012
k=0 " k=0 "

The assertion follows from this relation by taking limits as n — oo.
It can also be shown by induction that

(diag (M1, - -+, Mn))* = diag (AF, -+, AR)-

The final assertion in the lemma now follows after multiplication by 1/k! and
then forming the infinite series. |

Remark. The addition theorem can also be derived from property (3"”). Ac-
cording to this property, U(t) := e(B+C)t is a solution of

U'=(B+C)U with U(@0)=1I. (7)
It follows from the product rule 14.IV that V' (t) := Bt - € also satisfies (7),
V' = BeB'eCt + ePtCeCt = (B + C)V,
since CeB? = eB'C. Hence U = V by uniqueness.

‘We note some simple consequences of the addition theorem.
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IV. Corollaries. For an arbitrary square matriz A,
ONCORETRS

(b) eAls+t) = gAs . At

(c) eA+M — oA oA,

V. Remark. If the matrix A has the form of a Jordan block (17.11),
then the fundamental matrix X () with X (0) = I can be explicitly given; cf.
(17.13). 1t is also given by e’*, where J is the r x r matrix from (17.12). The
uniqueness theorem guarantees that e’® actually has the form (17.13); however,
this result can also be explicitly verified without difficulty. We briefly indicate
the necessary steps. If F' = (fj;) is the r x r matrix with elements f; ;41 = 1,
fi; = 0 otherwise, then it is easy to check that

G=F? isgivenby g;;+2=1, g;; = 0 otherwise,
H=F3% isgivenby h;;43 =1, h;; = 0 otherwise,

In particular, F* = 0 for k > r. It follows that

1t gt - Aptt!
_(r__l_z_ﬂtr—Z
eft=1 00 1 - (T-%)Ttr—s ; (8)
\o0 0 - 1
hence, if J = AI + F, then by IV.(c),
oIt — eMeFt. ©)

This is precisely the matrix given in (17.13).

VI. Inhomogeneous Systems. By (16.4), the initial value problem
Yy =Ay+b(t), y(r)=n (A constant) (10)

has the solution

t
y(t) =eAt-Tpy 4 / eA(t=9)p(s) ds. (11)

T

This is true because X (t) = e4(*=7) is the fundamental matrix with X (r) = I
and, by IV.(a),

(X ()7 =407, (12)
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VIIL. Exercise. Power Series. (a)If A is a constant n x n matrix, then
sin A and cos A are defined by the power series

sinA := Z( 1)'°(2k+1),, cos A = Z( 1)'°(2k)|

Prove the Euler formulas
eh — cosA+i-sinAd

1 . . . .
cosA = §(em +e14), sind= 2li(em —e714)

and the addition theorems

cos(A+ B) = cosAcosB —sinAsin B,
sin(A+ B) = sinAcosB + cos AsinB,

under the assumptions that A and B commute (AB = BA).
Show that the functions cos At and sin At can be defined by initial value
problems:

Y'+A%Y =0,Y(0)=1I, Y'(0) =0 <= Y{(t) =cos At,
Y’ +A%Y =0,Y(0) =0, Y'(0) = A <= Y(t) =sin At.

For n =1 this reduces to well-known properties of cosat and sin at.

(b) Let f(t) = X_ fit}, g(t) = Y g:itt, and h(t) = 3 h;t' (3 runs from 0 to
0o) be power series with positive radii of convergence r¢, 74, and 7, > 75 + 7.
Assume that f(s)g(t) = h(s +t) for |s| < 7y, |t| < rg. Show that if [4] < 7y,
|B] < rg, and AB = BA, then f(A)g(B) = h(A + B). Here |A| is an operator
norm generated from an arbitrary vector norm in R™ (or C*).

VIII. Exercise. Special Inhomogeneous Systems. In the following
p(t) and q(t) are vector polynomials. Show:
(a) If a & o(A), then the differential equation

y' = Ay + ce* (ceC™ (13)

has exactly one solution of the form y = de®t, d € C.
More generally, the differential equation

y' = Ay + p(t)e* (14)

has exactly one solution of the form y = q(t)e*t, and degree p = degree q.
In particular, the differential equation

y =Ay+c

has exactly one constant solution if det A # 0.
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(b) If A, , and p(t) are real-valued and if i ¢ o(A), then the equation
y' = Ay + p(t) cosat (15)

has exactly one solution of the form y(t) = q,(t) cosat + qz(t)sinat with real
polynomials q;, q2, and degree p = max{degree q,degree qz}.

(c) Also in the case o € o(A) the differential equation (14) has a solution
of the form y = q(t)e®, but we can say only that degreeq < degree p + m(a),
where m(a) is the algebraic multiplicity of the eigenvalue .

Hint: For (b) consider the equation y' = Ay + p(t)e'®¢; for (c) transform
first into Jordan normal form and prove the statement for A = J.

Supplement: Floquet Theory

We deal with linear systems with periodic coefficients. The following theory
goes back to the French mathematician Gaston Floquet (1847-1920). A main
result states that systems with periodic coefficients can be reduced to systems
with constant coefficients (at least in principle).

IX. Homogeneous Systems with Periodic Coefficients. Letw > 0.
A function f is called w-periodic if f is defined in R and satisfies the equation
f(t +w) = f(t). We consider systems with a continuous, w-periodic (real or
complex) coefficient matrix,

Y = Alt)y with A(t+w)=A(). (16)

In the following, the term solution will always refer to solutions of (16). Every
solution exists in R.

(a) If y(t) is a solution, then so is z(t) = y(t + w).

(b) If y is a solution and y(w) = Ay(0) (A € R or C), then it follows that
y(t +w) = Ay(t) and more generally y(t + kw) = A*y(t) for all ¢ (k an integer).

The proof of (a) is elementary; (b) follows for k = 1 from the observation
that Ay(t) and y(¢t + w) both satisfy the same initial condition at ¢t = 0, the
result for £ > 1 is obtained by induction and for £ < 0 using the change of
independent variable ¢’ = t + kw. [ |

Let X(t) be the fundamental matrix for (16) with X (0) = I. Then by (a)
and Proposition 15.111, Z(t) = X (¢ +w) is also a fundamental matrix, and from
15.11.(h) it follows that

X(t+w)=X(@#)C with nonsingular C = X(w). an

The transition matriz C will play a decisive role in the following. Its eigenval-
ues A; are called characteristic (or Floguet) multipliers. Since C is nonsingular,
they are nonzero, and there exist numbers u; € C with A; = e¥#¢. The y; are
called characteristic exponents. They are determined only up to a multiple of
2mi/w (because 2™ = 1). However, Re y; is uniquely determined.
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Since an arbitrary solution can be represented in the form y(t) = X (¢)y(0),
the relation y(w) = Cy(0) holds. Thus the equation y(w) = \y(0) is equivalent
to Cy(0) = A\y(0), and from (b) one obtains the following theorem.

Theorem. There exist nontrival solutions to (16) satisfying y(t + w) =
Ay (t) if and only if )\ is an eigenvalue of C. Every such solution has the form
y = X(t)ec, where ¢ is an eigenvector of C corresponding to ). If the matriz
C is diagonalizable, then one obtains a fundemental system of solutions in this
manner.

Therefore, there exist nontrivial w-periodic solutions if and only if A\ =1 1is
an eigenvalue of C, and periodic solutions with minimal period kw >0 (k € N)
if and only if C has an eigenvalue X satisfying \* =1 and M # 1 for 1< j < k.

We need a result that will not be proved until 22.VI: For a nonsingular

matrix C, there exists a matrix B with C = e“? (in general, B is complex, even

for real C). Because ki — 1, the matrix B is not uniquely determined; for
example, one can add (2kmi/w)l.

X. Theorem of Floquet. The fundamental matriz X (t) of (16) with
X (0) = I has o Floquet representation

X (t) = Q(t)eB? Floguet representation, (18)

where Q@ € C*(R) is w-periodic and B satisfies the equation C = X (w) = e“5.
Clearly, Q(0) = I, and Q(t) is a nonsingular matriz for all t.

Proof. We define @ by (18), i.e., Q(t) = X (t)e P%. Then
X(t+w) = Q(t + w)eBt+w),

On the other hand, X (t4+w) = X (t)C = Q(¢)ePtC = Q(t)eB(*+¥). The assertion
Q(t) = Q(t + w) follows (after multiplication by e B(t+«)) by comparing these
two results. |

Our analysis of the Floquet representation uses the following lemma.

Lemma. From the Jordan normal form V of the matriz U one obtains the
Jordan normal form of eV by replacing the diagonal elements \; of V by e
(the corresponding Jordan blocks are thus of the same size). An eigenvalue A of
U has the same algebraic and geometric multiplicity and the same eigenvectors
as the corresponding eigenvalue * of eV.

Proof. If V = D~UD (D nonsingular), then by IIL(b), ¥ = D~V D. In
our investigation of the matrix eV we can confine ourselves to a single Jordan
block J = AI + F with r columns (cf. V for the notation). We show that for
xeC",

Jx = M+ Fx=0+ x=oce;,

e/x = ex= (f ~Ix=0<= x=ae,
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where e; = (1,0,...,0). The first line is easily established, and by (8) the
matrix B = ef — I satisfies b;; = 0 for j < 4, b; ;41 = 1, which leads to the
same result x = ce; (the reader should consider, e.g., the case r = 4). The
matrix J has only one eigenvalue ), and the matrix e’ has only one eigenvalue
e, and both matrices have e; as the only eigenvector. Hence eI + F is the
Jordan normal form of the matrix e’. If one observes, in addition, that from a
common eigenvector x of V and eV, a common eigenvector ¢ = Dx of U and
eV is obtained, then all assertions of the lemma are proved. |

We apply the lemma to the matrix U = wB. If u; are the eigenvalues of B,
then wy; are the eigenvalues of U and ); = e“#* are the eigenvalues of C = e¥
(i=1,...,n); i.e., the u; are characteristic exponents.

Suppose both sides of (18) are multiplied on the right by a nonsingular
matrix D. Then the matrix Y (¢) = X (t)D on the left is a fundamental matrix
of (16), and the matrix Z(t) = e®*D on the right is a fundamental matrix of
the equation z’ = Bz (both with the initial value D at ¢ = 0). The resulting
equation Y (t) = Q(t)Z(t) shows how the fundamental solutions of (16) are
obtained from those of 2’ = Bz. The summary given in 17.VIII (with B instead
of A) leads then to the following

XI. Summary. Aneigenvalue A = e“# of C corresponds to an eigenvalue
u of B, and both have the same algebraic multiplicity k. Moreover, there exist
k linearly independent solutions

}'=Q(t)pm(t)e"t (m=0’1""ak—1)’
where p,.(t) is a vector polynomial of degree < m. The function
qm(t) = Q)Pm(t) = co(t) + c1(t)t + - -~ + cm()t™

is a “polynomial with w-periodic coefficients” c;. This construction, carried out
for all characteristic exponents p;, leads to a fundamental system of solutions
to equation (16).

Stability. Since there exist positive constants a, 8 with o < |Q(t)| < B,
the stability analysis from 17.XI carries over to equation (16) with A replaced
by p. Thus the zero solution of equation (16) is

asymptotically stable | if |A] < 1 for all A € ¢(C)

stable if |A] <1 for all A € ¢(C) and the eigenvalues
A with |A| = 1 are semisimple

unstable in all other cases.

Note that the condition |A| < 1 or £ 1 or > 1 for the characteristic exponents
is equivalent to Rep < 0or <0 or > 0.
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The fact that the characteristic exponents are not uniquely determined plays
no role here. From A = e“#’ it follows that p = ' + 2ki/w (k an integer). If u
is replaced by p’ in e#t, then an w-periodic factor e(kmi/w)t ypnears, which can
be incorporated into the term qn,(t).

XII. The Inhomogeneous System. The system
y' = A(t)y +b(¢) (19)

is now considered under the assumption that A(t) and b(t) are continuous and
w-periodic. The following theorem clarifies the relationship of (19) with the
system

z' = Bz +c(t) with c(t) = Q7 !(t)b(t). (20)
Theorem. The solutions y of equation (19) and z of equation (20) with the

same initial value y(0) = z(0) = 1 are coupled by the relation y(t) = Q(t)z(t)
(equivalently, z(t) = Q(t)~1y(t)).

Proof. From the Floquet representation X = QeP? it follows that X’ =
(Q' + @B)eBt = AX = AQeP, hence

Q' +QB=4Q. *)

Let y be a solution of (19) and z be defined by y = Qz. Then y’ = Q'z + Q2
and y' = Ay + b, from which

Qz+Qz =AQz+b=Q'z+QBz+b

follows because of (x). By multiplication on the left by @~ one obtains (20).
The reverse direction is proved similarly. B

§ 19. Linear Differential Equations of Order n

A linear differential equation of order n
Lu:=uM™ 4 ap_) ()™ + ... 4 ao(t)u = b(t) (1)
is equivalent to the system

!

N=1y2

(2)

Yn—1=Yn
Y= —(a0yn + - + an-1yn) + b(2);
cf. 11.1. This can be written in the form

y' = A(t)y +b(t), (2
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where
Y1 u 0
Y2 u’ 0
y= = ) b = 3
Yn—1 u(n=2 0
Yn 'U-(n_]) b(t)
0 1 0 0 0
0 0 1 0 0
A=
0 0 0 . 1 0
0 0 o - 0 1
—@p —G1 —G2 - —Op—2 —0Onp-]

On the basis of Theorem 14.VI, we have the following theorem.

1. Existence and Uniqueness Theorem. If the real- or complez-valued
coefficients a;(t), b(t) (i = 1,...,n, a, = 1) are continuous in an interval J
and if T € J, then the initial value problem

n

Lu= Z a;()u(t) = b(t), v (r)=mn,, (»=0,1,...,n—1) (3)

=0

has ezactly one solution. The solution ezists in all of J and depends continuously
on ny, and on a;(t), b(t) in each compact subinterval of J.

II. The Homogeneous Differential Equation Lu = 0. If the coef-
ficients ai(t) are real (or complex), then the real (complez) solutions of the
homogeneous differential equation form an n-dimensional vector space over the
field of real (complex) numbers.

Each vector (70,71, --,Mn-1) € R™ or C" is associated with a solution sat-
isfying the initial conditions in (3), and this mapping is again a linear isomor-
phism; cf. 15.1. Thus there exist n linearly independent solutions

ul(t)»"-aun(t)v (4)

and they form a fundamental system. Every solution is a linear combination of
the u;.
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In going from (1) to (2), a solution u(t) of (1) is associated with the vec-
tor y(t) = (u(t),u'(t),...,u™"1(t))7, which is a solution of the corresponding
system (2). Thus the Wronskian of the n solutions (4) is the determinant

Uy e Un
W(t) =
ugn—l) . usln—l)

By (15.6), (15.7), the Wronskian satisfies the equation
W = —a,_1W; ’

hence

W(t) = W(T)e—/r s-ile)de 5)

In §15 we comstructed a special fundamental system X(t) with X(t) = I.
Here that system corresponds to a fundamental system uy, ..., u, of (3), where

. 1 for j=i—1,
Lu; =0, ui’ ()=
0 otherwise.

III. The D*Alembert Reduction Method. The reduction method of
815 is valid for every homogeneous linear system. However, if applied directly
to the system (2), it has the disadvantage that the new system of order n — 1
no longer has the specjal form of (2), i.e., it cannot be written as a system of
linear differential equations of order n — 1. Therefore, it is expedient to modify
the ansatz as follows:

Suppose v(t) # 0 is a particular solution of Lv = 0 and

u(t) = v(t)w(t).

The function w(t) is to be determined in such a way that u is also a solution.
Applying the differential operator L, we have

Lu= f_: o Z (;) w@pli~i) = .le(j) i (;) 2 ()0t
iz

i=0 j=0 i=j
The term corresponding to 5 = 0 in the sum on the right equals w - Lv and
hence equals zero; thus we have

n

=1 i=j
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(note that the sum starts with j = 1). Therefore, Lu = 0 holds if and only if w
satisfies the differential equation

n
Lw=Y bjt)w? =0.
Jj=1

This equation, however, is a differential equation of order n — 1 for w’. Suppose

that n — 1 linearly independent solutions wj, ..., w},_; have been determined
and wy, ..., Wp—1 are corresponding antiderivatives. Then the n functions
v, vW1,..., VWp—1

are a fundamental system for the original differential equation Lu = 0.
For proof, we consider a linear combination

CoV + uvwy + -+ - + Cp1VWp—1 = 0.
After division by v and differentiation one obtains
Qwy + -+ Cpm1Wp_y = 0.

Therefore, ¢; = -+ = ¢,—1 = 0 because of the linear independence of the w;.

IV. The Case n=2. Ifuv(t) is a solution of the equation u” +a,(t)u’ +
ao(t)u = 0, then a second solution u = vw is obtained by solving

v
w' (0.1 + 2-;) +’U)” =0.

Ezample.
u” — ' cost +usint =0.
A solution is given by
v = eSint.
For w(t), we have

w” +w cost=0, ie w'(t)=e SNt

Thus a second solution is

u(t) — essint /t e—sins ds.
0
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V. The Inhomogeneous Differential Equation. The result that was
proved in 16.I for systems remains true:
Every solution w(t) of the inhomogeneous differential equation

Lw = b(t) (6)
can be written in the form
w=w"+u,

where w* is a particular solution of (6) and u is the general solution to the
homogeneous differential equation.

A particular solution w of the differential equation (6) can be obtained by
means of the

VI. Method of Variation of Constants. Let
w(t) =u(t)er(t) + - - + un(t)en(t),

where 44, ..., u, is a fundamental system and ¢, ..., ¢, are functions that are
yet to be determined. Instead of recomputing this ansatz, we refer to the result
in §16, in particular (16.3). There it was shown that

z(t) =Y (1) /t Y~(s)b(s) ds

is a solution of the inhomogeneous differential equation 2z’ = A(t)z + b(t). In
order to carry this over to the system (2), we define

w Uy ... Un 0
A
o= Y | ve=]| : c ey =] °
w(ﬂ—l) u{n_l) cae u;ﬂ—l) b(t)

Due to the special form of b, the calculation of the expression Y~ (¢)b(t) = a(t)
is particularly simple. Since a(t) is the solution of the linear system of equations

Y-a=b,
then using Cramer’s rule, one obtains the components of a in the form

v
=
with W = detY and

a;

L N o R
V; = det
U i (O R
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Expanding V; in terms of cofactors of the ith column yields
Vi(t) = (~=1)"" () Wi(t),
where W; is the Wronskian determinant (of order n — 1) of the functions u;,
oy Ui—1, Ui41,y o0y Un.

Thus a solution w of the inhomogeneous differential equation reads (w is the
first component of z)

w) =S w0 [ W) ds. Q

VII. The Case n = 2. If ui(t), ua(t) is a fundamental system for the
homogeneous differential equation, then

is a solution of the inhomogeneous differential equatlon.

Ezample.
w" —w'cost +wsint = sint.
The corresponding homogeneous equation was dealt with in VI. Using the fun-
damental system found there, v = €%i"t, u = ¢v with ¢(t) = / t e "% ds, we

0
have

esin t esin t¢(t)
esintcost 1+ eint(t)cost
which also follows from (5). By (8),

t T 1
w(t) = —eSi“‘/ sinr (/ g sins ds) dr + eSi“th(t)/ sinrdr
0 0 0

is a solution to the given inhomogeneous differential equation. From the rela-

tions
t o t t
/ sinr </ e_s‘“sds) dr=/ e Sins (/ sinrdr) ds
0 0 0 : s

=— [ e ""3(cost — coss)ds
0

=—~@(t)cost —e 5Nt -1

__ .sint
- ]

W(t) =

it follows that
t
wit) = / efint=sins go | 1 _esint — y() 41— o(t).
0

Hence w;(t) =1 is also a solution.
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§ 20. Linear Equations of Order n with
Constant Coefficients

Now let
Lu= Zaiu(i) (t) =0, a; constant, a, = 1. (1)
=0

The characteristic polynomi;zl

-2 1 0 0 0
0 =A 1 0 0 |
PO =
0 0 0 1 0
0 0 0 -2 1
—@p —@1 —G2 ‘*° —Gp-2 —Gp-1— A

can be given explicitly. Expanding the determinant in cofactors of the last row,
one obtains

P()) = (‘l)n[)\n-i-an—l)\n_l + -+ a1 + ag). (2)

I. Theorem. If) isa zero of the characteristic polynomial of multiplicity
k, then there are k solutions of the differential equation (1)

et tert, ... thleMt 3)

that correspond to A. In this manner, one obtains n linearly independent so-
lutions from the n zeros of the characteristic polynomial P()) (each counted
according to its multiplicity), that is, @ fundamental system.

If the a; are real and there ezist complex zeros, then this fundamental system
contains complez solutions. A real fundamental system can be obtained by split-
ting the k solutions in (3) corresponding to a comples zero A = u+iv (v #0)
into real and imaginary parts,

t9e*t cosvt, tletsinvt (¢=0,1,...,k~1)

(and discarding the solutions corresponding to ).

An elementary proof, which is independent of §17, will be given for this
important theorem. Because of (2), the ansatz u = e*t leads to

L(eM) =Y a(*)D =3 axieM = (~1)"eMP()); (4)
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ie., u = e is a solution of (1) if and only if A is a zero of the characteristic

polynomial. In order to show that for a zero A of multiplicity k& the functions
t%e (0 < g < k) are solutions, one makes use of the following trick: We have
LAY

dxe” ’

and hence, because of (4),

t%eM =

q ] q
L(t%*) = L (é%e’“) = d—/\—qL(e’\‘) = (—1)"%(‘3“13(,\)).
The interchange of derivatives with respect to t and A is clearly permissible. It
was assumed that P()) has a zero of multiplicity k at the point ), i.e., that the
derivatives of P(A) up to order k& — 1 vanish at the point A. The same is then
also true for the the derivatives of the function e* P()) (t fixed; product rule!).
Hence we have L(t%e*) =0 for ¢ =0,1,...,k - 1.

In order to check that these n solutions are linearly independent, we con-
sider an arbitrary linear combination of these solutions (with real or complex
coefficients). It is clearly of the form

m
¢(t) = Zp‘i (t)eNta

i=1
where p;(t) is a polynomial (with complex coefficients, in general) and A, ...,
Am (m < n) are distinct numbers, namely the zeros of the characteristic poly-
nomial (multiple zeros are only counted once).

We must show that ¢(t) vanishes identically only if all p;(¢t) vanish. For

m = 1 this is immediately clear. In the induction proof, it will be assumed that
the result is true for m summands (with arbitrary polynomials) and that

ipi(t)e’\it +pt)eM =0 (A#N\).

i=1

Multiplication by e~*t gives

m

Zpi(t)eg"t +p(t) =0, o;=M-A#0.

i=1
If this equation is repeatedly differentiated until p(t) vanishes, then what re-
mains is an expression of the form

m

> ai(t)e?* =0,

i=1
and by the induction hypothesis g;(t) = 0, since the g; are again polynomials.
However, this is possible only if p;(t) = 0, since differentiation of an expression
r(t)e?® (r a polynomial # 0, ¢ # 0) gives rise to an expression (r’ + pr)e?t =
q(t)e?, where g(t) is a polynomial of the same degree, hence # 0. a

Procedure for Finding Solutions. By Theorem I, the ansatz u = e* imme-
diately produces the characteristic polynomial and with it all solutions.
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II. Example. u®) + 4u® 4 2y — 4" + 8/ + 16u = 0.
The characteristic polynomial is
—P(A) =X +4x4+2)3-4)2 18X+ 16
=(A+28302-2x+2)=(A+23A-1+49)(A—-1-1).
A real fundamental system of solutions is given by
e 2 te™? t2e~2 é'sint, e’ cost.
III. Second Order Linear Differential Equations. The differential
equation
Lu=v"+2au +bu=0 '(5)
arises in physics, for example as the differential equation of damped oscillations
mE+PBs+ks=0 for s=s(t). (6)

In the mechanical interpretation m is the mass, s(t) the displacement from the
equilibrium s = 0, § > 0 the coefficient of friction, & > 0 the coefficient of
elasticity, i.e., of the linear restoring force (“spring constant”).

The characteristic equation

P(A)=X2+2aA+b=0
has the two roots,
=-—a—vVa?-b, p=-a++vVa?-b

If only real coefficients are considered, then the following three cases need
to be distinguished:

(a) a®>b: u = e(—a,+ @ _b)t, Ug = e(_a"\/pr)t

are real solutions. In the case a > 0, b > 0 both solutions tend to zero exponen-
tially as t — oo.

Oscillator equation: 32 > 4km, overdamped motion (nonoscillatory, aperi-
odic case).

(b) |a?=b: u =e %, uy=te .

Oscillator equation: (32 = 4km, critically damped motion (nonoscillatory, ape-
riodic case).

() | a®2<b: wu; =e %cosvb—a?t, up = e % sin b — a’t.

Oscillator equation: Damped oscillations with frequency

_ hma= -t Jm_E
v=oo b f = — 4km — (2.
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u ’U.’

D).
\_/

Damped oscillation curve in the tu-plane (left) and trajectory (right)

If equation (5) is regarded as a plane system for (z,y) = (u,u’), then the
classification introduced in 17.X leads to the following results (here it is assumed
that a > 0, b > 0):

Case (a) (overdamping) corresponds to 17.X.(a) with the normal form R(A, p),
where A < u < 0. The origin is a stable node.

Case (b) (critical damping) falls under 17.X.(b); the normal form is R,(—a).
Here again the origin is a stable node.

The case (c) of damped oscillations has the normal form K(—a, vb— a2);
cf. 17.X.(d). The origin is a stable vortex. The reader should study the two
figures to get a clear understanding of the connection between the behavior of
the function u(t) and the trajectory in the phase plane.

A detailed discussion of damped oscillations is found in elementary texts.

IV. The Inhomogeneous Equation of the form
Lu=1u"+2av' +bu=c-cosat (a,b,cand a 7# 0 real) )

can be solved using the technique given in §19. However, one arrives at this
goal more quickly by taking advantage of Exercise 18.VIIL.(b). One considers
the complex differential equation

u" + 200 + bu = c- el (7')
and uses the ansatz u(t) = Aelot (A complex). It leads to the equation
A(=c? + 2iac+ b) = ¢,

from which A can be calculated (the term in parentheses vanishes only if a = 0
and a? = b). The real part of u is a solution to the original equation (7).

In the case b > 0, the equation (7) describes an oscillatory system (with
damping if @ > 0) driven by an external force c - cos ot that acts on the system.
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The solution represents a forced oscillation with the frequency of the external
force.

The special case a = 0, b = o? is called the resonance case; equation (7’)
has then an unbounded solution

u= Atel®® with A= ——9—
2ai

The phenomena occurring for a = 0 are discussed in Exercise VIII.

V. Euler’s Differential Equation. This name is given to a differential
equation of the form (a; constant)

Ly = an2™y™ + 0, 121y D 4 a2y +aoy =0 (8)

for y = y(z). If y(z) is a solution, then so is y(—z); therefore, it is sufficient to
study the case £ > 0. Using the change of variables

z =e', y(e*) = u(t), y(z) = u(lnz)

we obtain the derivative formulas

du , du
@ YT = wWEm
d? d
dt"zl' =y'z + y'z? = Ix'= dt"zl' _ d_"tl"
d®u ! 1 2 "3 3,/ d®u d2u du
F:ym+3y °+y"'z° &= =z =E_3E+2EZ’

etc., which lead to a linear differential equation with constant coefficients for

u(t),

-1
Mu=bn@+bn_ " u

am 1F+“'+bou=0.

This equation can be solved in closed form using the techniques in I. By the
way, ag = by and a, = b,.

Procedure for Calculating the Solutions. The two operators L and M are
connected through the equation

(Ly)(e") = (Mu)(t) with u(z) = y(e").
In particular, by equation (4),
L(z*) = M(e™) = (-1)"P(\)z* (z=¢"),

where P is the characteristic polynomial of M. Therefore, in order to obtain
P, it is not necessary to calculate the operator M; it is sufficient to calculate
L(z*). Then all of the solutions can be given using the result of Theorem I.



820. Linear Equations of order n with Constant Coefficients 209

— () Sy(t) Coupled pendulums

Ezample.
o2y’ — 3zy’ + Ty = 0.
Here
L(z*) = DA — 1) = 3A + 7]z* = P(\)z.

The characteristic equation A2 — 4\ 4+ 7 = 0 has the roots A = 2 £ iv/3. Thus
the differential equation Mu = 0 reads

d?u du

’Et? - 43{ + Tu = 0.

From the two real linearly independent solutions

u(t) = e*sin v3t, ug(t) = e cos V3t
one obtains the solutions

y1(z) = z?sin(v31nz), yo(z) = 2% cos(V3Inz)
of the original differential equation.

V1. Exercises. Determine all real solutions of the differential equations

(a) yn +4yl + 4y = €%,

(b) ¢" — 2y + 5y = €”.

. In particular, find the solutions satisfying the initial conditions y(0) = 1,
y'(0) =0.

VII. Exercise. Coupled Pendulums. For two coupled pendulums of equal
mass m and equal length ! the equations of motion read

mi = —az — k(z —y),
. with a=mg/!
mj = —ay ~ k(y — z),

(g is the gravitational constant, k is the spring constant). Here the coordinate
systems are chosen in such a way that z = y = 0 corresponds to the equilibrium
point, and it is assumed that the pendulums hang vertically at rest. These are
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linearized equations, which are valid for small oscillations. Give a fundamental
system of solutions (either by transforming to a system of first order and cal-
culating the characteristic polynomial or by making two physically suggestive
ansdtze). Discuss the course of the motion if one pendulum is given a push at
time ¢ = 0, that is, z(0) = 0, £(0) = 1, y(0) = 0, y(0) = 0.

VIII. Exercise. Determine all (real) solutions of the differential equa-
tion

u" + 2au’ + w?u = ¢ - coswt (c>0,0<a<w).

Show that L = limsup |u(t)| depends only on a, ¢, w, and calculate L(a,c,w)
t—o00

(a =0 is a special case).

Remark. The above differential equation represents the simplest mathemat-
ical model for a resonance phenomenon in a periodically excited mechanical
system (usually to be avoided in mechanical systems, but sometimes a desirable
property in electrical circuits). In the differential equation for a harmonic os-
cillator 4" + w?u = 0, the solutions u = & coswt + Fsinwt describe a harmonic
oscillation with frequency w/(27). If the system is excited with the same fre-
quency (right side = ¢ - coswt), then resonance occurs, and the solutions grow
without bound (in the case a = 0) as t — co. In the case of damping (a > 0)
(which is always present in practice), the solutions remain indeed bounded.
However, the maximum amplitude tends to infinity as a — 0+.

Supplement: Linear Differential Equations with Periodic
Coeflicients

IX. Second Order Equations with Periodic Coefficents. We con-
sider the differential equation

u’ + 2a(t)u’ +b(t)u=0 )

with real-valued, continuous, and w-periodic coefficients a, b. We apply the
Floquet theory, developed at the end of §18, to the equivalent system for y =
(u, )7,

0 1
y' = A(t)y with A(t)=<_b —2a)' 9"

The transition matrix C = X (w) must be determined first. Thus let (u,v) be a
fundamental system for (9) with initial values u(0) = 1, +'(0) = 0 and v(0) =0,
v'(0) =1 and

v v y(w) v(w)
X (u’ v’) @) (u’(w) v’(w))
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Thus we have det(C — AI) = A2 — X - trC + det C. The last term can be
computed using formula (15.8): detC = exp(fy tr A(s)ds). Thus it remains
only to calculate tr C; then the stability behavior is essentially determined.
Using the notation det C = v > 0, tr C = u(w) + v'(w) = 2¢, the eigenvalues of
C can be obtained from the equation

N _—2aA+v7=0 as M2=atx/a?—7.
From the root theorem of Vieta, we obtain the relations
MAz =+ >0 and (suitably normalized) w(u; + u2) =logy

for the characteristic multipliers A; and exponents u; (the latter are determined
by A; = e“#i). Theorem 18.X1I yields the following separation into cases. Note
here that the first component of a solution y(t) = q(t)e** of (9') represents a
solution of (9) and that o is real.

(a) @® # 7. There exist two real or complex conjugate eigenvalues Ay, Az
and correspondingly a fundamental system of solutions of the form

ur(t) = pr(t)et,  ua(t) = po(t)er?t,

where the p; are w-periodic functions. Recall that these two solutions satisfy
ui(t +w) = Ausi(t) (E=1,2).

(b) a® = v and the only eigenvalue o is semisimple. In this case C has
two linearly independent eigenvectors and hence, similar to case (a), there is a
fundamental system

w(t) =pi(t)e”’, ua(t) = pa(t)e”,

where the p; are again w-periodic and p is determined by e** = «. Since
every vector y € R? satisfies the equation Cy = ay, we have C = ol , whence
X(t +w) = aX(t). Thus for every solution u we have u(t + w) = au(t).

(c) a? = 1, the eigenvalue « is not semisimple. There exists a fundamental
system of solutions (p; w-periodic, a = e**)

ur(t) = pr(t)ert, uo(t) = (p2(t) + pa(t)t)et.

In addition, one can assume that p; = p3 here; the basis for this result is the
last sentence in 17.VIII. These solutions may be complex. Real solutions are
obtained by splitting into real and imaginary parts, similarly to 17.IV.

X. Hill’s Differential Equation. If a(t) = 0, one obtains from (9)
u’ +b(t)u=0 (b(t) w-periodic)  Hill’s equation. (10)

Here tr A(t) = 0; hence v = det C = 1. The characteristic multipliers are given
by

Mz=axva?-1, Ml=1, p+p2=0.
Note that « is real. According to 18.X1I, there are three cases:
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[a] > 1: | A1 > 1, the zero solution is unstable.

la] < 1: | A2 = a+xif (B > 0) and thus [A| = [A2[=1.
The zero solution is stable, but not asymptot-
ically stable.

lal=1: | A1 = A = 1 or —1. If the eigenvalue is
semisimple, then the zero solution is stable,
otherwise unstable.

If || = 1 and the eigenvalue is semisimple, then by IX.(b), X (w) = X(0) in
the case @ = 1 and X (2w) = X(0) in the case @ = —1. In the first (or second)
case every solution of the differential equation is periodic with period w (or 2w).

A Special Case. Let the coefficient b(t) be an even function. Then in the
fundamental system considered above, u(t) = u(—t) and v(t) = —v(—t). From
this observation and from C~! = X(—w) one deduces that u(w) = v'(w) (exer-
cise!). Thus the stability behavior (except for the case oo = +£1) is completely
determined by a single function value a = u(w).

A well-known example with numerous physical applications is

v’ +(§+ycos2t)u=0 (w=m)  Mathieu’s equation,

named after the French mathematician Emile-Léonard Mathieu (1835-1900).
The domain of stability, the set of all points (v, §) with stable zero solution, can
be represented in a figure in the y§-plane (this is also true for other differential
equations in which b(t) depends on two parameters). Such a representation is
called a stability map. It can be found, among others, in the book by L. Collatz
(1988).

Numerous stability criteria have been established for Hill’s equation (10).
Two examples:

(a) If b(t) < 0, then the differential equation is unstable.

(b) If b(t) > 0 and / b(t) dt < 4/w, then the differential equation is stable
0

(Lyapunov 1839).

(c) Ezercise. Carry out the above analysis for the differential equations
u” +4 =0 and ¢" = u in terms of w (the calculation of C, a, A;, ui, stability).
The coefficient b = *£1 is w-periodic for every w > 0.

The proof of (a) is simple. By (10), v” = —b(t)u > 0 as long as u is positive.
Thus the solution v with 4(0) = 1, +/(0) = 1 is convex and > 1 +1¢. |

The book by L. Cesari (1971) contains additional examples and proofs.



Chapter V
Complex Linear Systems

§ 21. Homogeneous Linear Systems in the
Regular Case

I. Notation. The Space H(G). The subject of this chapter is the
homogeneous linear system

w'(z) = A(z)w(2), (1)

where w(z) = (w1(2),...,wn(2))" is a complex-valued vector function and
A(z) = (ai;(2)) is a complex-valued n x n matrix. We also investigate homo-
geneous linear differential equations of higher order. Let G C C be open and
denote by H(G) the complex linear space of functions that are single-valued and
holomorphic on G. We write w(z) € H(G) or A(z) € H(G) if every component
w;(2) or a;;j(2) belongs to H(G). Compatible norms for complex column vectors
and n x n matrices will be denoted by single vertical bars, and the properties
(14.2-3),

|AB| < |A||B| and [Aw| < |A[lw],

are taken for granted. Throughout this chapter, matrices are understood to be
complex n X n matrices.

II. Theorem. If G is simply connected and A(2) € H(G), then the ini-
tial value problem

w = A(z)w, w(n)=wo (% €G, woeC") (2)

has ezactly one solution w(z) = w(z; zp, Wp) € H(G).

The solutions of (1) form an n-dimensional (complex) linear subspace of
H(G). For a fized 2o, the mapping wo — w(z; zp, Wo) is a linear isomorphism
between C™ and this “solution space.”

This theorem is in almost complete agreement with the real Theorem 15.1.
It is important to note that if G is simply connected, then every solution can
be extended to all of G.

213
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Proof. Local existence and uniqueness in a disk |z — zp| < a follow immedi-
ately from Theorem 10.X. If z is an arbitrary point in G, then z can be connected
to 2y by a path lying in G, and the solution w can be extended along this path
from 2y to z by applying the local existence theorem 10.X.

It is easy to give a positive lower bound for the radii of disks appearing in
the individual steps of the extension. Thus by the monodromy theorem the
solution exists in G. The statements about the isomorphism are trivial; cf. 15.1.

Here is another proof that avoids analytic continuation and the monodromy
theorem and at the same time yields an error estimate that will be important
later on.

Let p(2) be a real-valued continuous function defined on G such that

|A(z)| <p(z) In G. (3)

Let C : ¢ = ¢(s) (0 £ s < I) be a smooth curve, parametrized by arc length,
connecting the points 2y and z in G. Define

!
Qz0) = /C pds = /0 p(¢(s)) ds
‘and
P(z) = inf Q(z: C), (4

where the infimum is taken over all curves lying in G that connect the points
2o and z. It is easy to see that P(z) is bounded on every compact subset of G.
Indeed, P is continuous; however, we do not need this fact. The set B(G) of all
vector functions u € H(G) with

llu} := sup u(z)[e™27®) < 00 (5)

is a Banach space. The completeness of B(G) follows from the fact that con-
vergence in the norm implies uniform convergence on compact subsets of G.
We consider the linear operator T defined by

(Tu)(e) = [ " AQu(Q)d, ueB(G);

the integral is independent of path. Let C : { = ((s) (0 £ s < I) be a smooth
curve connecting the points zg and z and let

q(s) = /Os p(¢(s'))ds’, whence g¢(l) = Q(z;C).

Clearly, g(s) = P(¢(s)), since the function ¢{(s’), 0 < s’ < s, is a path connecting
the points zp and ((s). Therefore, [u(¢(s))} < |lul|e?¥) and

Tu(z)| < / p(Olu(¢)|ds

C
1
<lull [ s(ctanerras < Bl
0
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where the relation (e29(9)" = 2p(¢(s))e29(*) is used to establish the final inequal-
ity. Since C is arbitrary, the term ¢(l) = Q(2; C) on the right can be replaced by
P(z). Multiplying both sides of the resulting inequality by e~2P(2) and taking
the supremum over G leads to

1
[Tl < 5llull. (6)

The initial value problem is equivalent to the operator equation w = wo+Tw =:
Sw, where the operator S satisfies in B(G) a Lipschitz condition ||Su— Sv| =
IT(u— v)|| € 3llu— v| with Lipschitz constant 1/2. In addition, wo € B(G).
Therefore, by the fixed point theorem 5.IX, there exists exactly one solution w
in B(G). Since this proof works also in compact subsets G; C G and every
solution v € H(G) belongs to the Banach space B(G,), we get v =w in G;
and hence in G, i.e., all solutions belong to B(G). | |

III. Corollary. The solution of.the initial value problem (2) satisfies the
estimate

|w(z)] < 2lwo|e?P®) in G.
Proof. Because of (6), we have
1
w=wo +Tw = [[w]| < [[wo| + S |Iwll,

whence ||w|| < 2||wp| = 2|wp|. The assertion follows. |

IV. Fundamental Matrices. By Theorem II, the solutions of (1) form
an n-dimensional complex linear space, and the propositions discussed in 15.11,
III also hold for (1). We recall them briefly. If a “solution matrix” W is
formed with n solutions w1, ..., W, as columns, then W satisfies the differential
equation

W'(z) = A(2)W (2). 1)

In particular, there exist n linearly independent solutions {a fundamental sys-
tem) wy, ..., W, from which every solution can be obtained as a linear combi-
nation

w=cwy+-+eaw, (¢ €C).

In this case, the solution matrix W = (wy, ..., w,) is again called a fundamental
matrix. The following four statements are equivalent:

(a) W{z) is a fundamental matrix.
(b) W(2p) is a nonsingular matrix for some 23 € G.

(c) W{(=zp) is nonsingular for every 2, € G.
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(d) the Wronskian ¢(z) = detW(z2) is # 0 in G.
The Wronskian ¢(z) belongs to H(G) and satisfies
¢' =tr(A(2)) - ¢. (8)

Finally, we recall Proposition 15.1I.(h): Given a fundamental matrix W (z),
one can obtain every fundamental matrix in the form

U(z) =W (2)C, C nonsingular.

Exercise. Show that every solution of the equation w” = e*w satisfies an
estimate [w(2)| + |w'(2)| < C-exp {2¢(z)|2|}, z = z+ 1y, ¢(z) = 1+ (e* —1)/z.

§ 22. Isolated Singularities

I. Statement of the Problern and Examples. We investigate the
behavior of the solutions to the differential equation

w' = A(z)w (1)

in a neighborhood of an isolated singular point z of the matrix A(z). It can be

assumed that 2o = 0 (one introduces the change of variables 2’ = z — 25). Thus

A(z) is assumed to be single-valued and holomorphic for 0 < |2| < r (r > 0).
An understanding of some elementary properties of the complex logarithm

logz =In|z| +iargz + 2kni (k an integer),

and the generalized power,
2 =elE: (ceC),

is needed in this section. The argument of z is normalized to
—-nr<argz < 7.

The logarithm is an analytic, infinitely many-valued function in the domain
G =C\ {0}. With k£ = 0 one obtains the principal value of the logarithm.

‘We begin with two examples.

(a) Let n =1, ¢ € C and consider the differential equation

A solution is given by w = 2¢ (since it is % 0 and n = 1, this solution is a
fundamental system). The function A(z) = ¢/z is holomorphic in G = C\ {0}.
However, the domain G is not simply connected. Therefore, Theorem 21.II does
not apply in G, but it does apply on simply connected subsets of G. For real
integers c, the solution is single-valued and holomorphic in G. On the other
hand, for ¢ = 1/2 the solution w = /z is double-valued, etc.
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z-plane

Res
logb

-

The mapping s = logz

(b) Consider the system (n = 2)

w2

wy = — wy =0.
The corresponding matrix A(z) is likewise holomorphic in G = C\{0}. From the
solution wy = ¢ of the second equation one obtains w; = clogz. A fundamental
system of solutions is given by

logz 1
W(z)=(°f o)'

The first of these solutions is infinitely many-valued in G, the second is
single-valued.

These examples show that the solutions of (1) can be infinitely many-valued
functions in the neighborhood of an isolated singular point of the matrix A(z).
We introduce a transformation that clarifies this situation and shows a way to
avoid some of the associated problems.

II. The Transformation s =logz. The transformation

s =logz, or z=¢",

maps the punctured disk K2 : 0 < |z| < r in the z-plane into the half-plane
Re s < logr of the s-plane.
Let R, denote the half-plane Re s < a. The equation

v(s) 1= w(e®)

associates each many-valued analytic function w in K2 with a holomorphic,
single-valued function v in Rjogr. Conversely, every v € H(Rjogr) gives rise to
a possibly many-valued function w in K? given by

w(z) = v(log z).
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Here w is single-valued or m-fold many-valued if and only if v(s) is periodic with
period 27i or periodic with smallest period 2mi, respectively. If neither of these
cases is present, then w(z) is infinitely many-valued in K2. Some examples are

w(z) = (logz)? <= w(s) =%

w(z) =2° < v(s)=e".

As a first application of this transformation, we investigate

III. Euler Systems. These systems are of the form
, A
W= —w, A = (ai;) constant. (2)

The function w(z) is a solution of (2) if and only if v(s) := w(e®) satisfies the
differential equation

dV — / s __ Sy —
L=V = Aw(e®) = Av(s).
We know from 18.II that such a system of differential equations with constant
coefficients has a fundamental matrix of the form

X Ak Gk

— oS —
V(s)=e = o

€ H(C);
k=0

the proof that %(e"s ) = Ae?® given in §18 is also valid for s € C. Hence

D 4k k
W(z) = 2% with 2% ;= eAloE= = )" % 3)

k=0

is an analytic, in general infinitely many-valued fundamental matrix for equation
(2) in KO =C\ {0}.

IV. The Structure of z#. Formula (3) defines the power function z*.
Its structure is easily determined from the analysis of e#* carried out in §18. If
A is a Jordan block, A = A\ + F (F is defined as in 18.V), then by (18.9),

e()\I+F)s = e)\ser’

where ef’* is given by (18.8). It follows that
1 logz %(logz)® Z(logz)?
0 1 logz  4(logz)?

M4F _ X
z =2 0 o 1 log 2 cee (4)
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If A is an arbitrary matrix and C a nonsingular matrix with A = C~*BC, then
by 18.I11, e# = C~'eBC holds, and hence

ZA — eAlogz — C—leBlong = C—IZBC.

If C is chosen such that B has Jordan normal form (17.10), then 27 is obtained
from B by replacing the individual Jordan blocks of B with square blocks of
the form (4).

The main result of this section is the following theorem. It shows that
the examples previously considered in I and III are representative of arbitrary
systems with isolated singularities at z = 0. More precisely, it says that the
solutions are products of at most three factors: a holomorphic function, 2*, and
log 2. Other kinds of many-valued functions do not occur.

V. Theorem. If A(2) is single-valued and holomorphic in K2 : 0 < |z| <
r, then (1) has a fundamental matriz of the form

W(z) = U(z)25, (5)

where U(z) is a single-valued holomorphic function in K° and B is a constant
matric.

Proof. If W(2) is a fundamental matrix of (1) and V(s) = W(e®), then
%V(s) — & A(e")V(s). (6)

By 21.11, this differential equation has a fundamental matrix V(s) that is holo-
morphic in Riog,. Since e®A(e®) is periodic with period 27i, the matrix V(s +
27i) is also a solution of (6) and indeed is again a fundamental matrix by
21.IV.(b),(c). Hence, by 21.1V,

V(s + 2mi) = V(s)C, C nonsingular.

By a theorem from matrix theory, there exists a matrix B such that C = g2miB ;
cf. Lemma VI below. The function

T(s) := V(s)e™B°
satisfies the equation
T(s + 2mi) = V(s + 2mi)e~Be+2m) — y(5)e2miBe—B(s+2nl) _, T(s),

i.e., T(s) is 2mi-periodic. Therefore, U(2) = T(log z) is single-valued in K?, and
W(z) := V(log z) = T(log z)z® has the form given by (5). n
Remark. Every fundamental matrix has the form (5), since for a nonsingular

matrix C

W(z)C =U(2)CC2BC =U(2)C2P with D=C"1BC.
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VI. Lemma. For every nonsingular n X n matriz C, there ezists anxn
matriz X such that

X =C.

The proof uses matrix versions of some basic facts on infinite series. As in
18.1, matrices are of size n X n, and | - | is a compatible matrix norm.
(a) For a complex double series, we have the theorem

5 (5e) -5 (Se) -5 (X @) # 5 (Sha) <o
i i ko iti=k i g
This carries immediately over to matrices Cj;; cf. 18.1.

We now consider power series f(2) = 3 fi2%, g(2) = X gi#*, h(2) = 3_ hi2?
(2 runs from 0 to oo) with positive radii of convergence r¢, rg, .

(b) Consider the Cauchy product f(2)g(z) = h(z), hi = fogi +- - + figo- If
|B| < min(r¢,rg), then f(B)g(B) = h(B). This follows from (a).

(c) We consider h(z) = f(g(z)). Let G(2) = 37z, v = |g:|, and denote
the power series expansions of the power g* or G* by 3" gFz? or 3° 2%, resp.
If G(p) < ry, where 0 < p < g, then h has a power series expansion

h(z) = f(g(2)) = Zhizi, where h; = kagf.
k

The series is absolutely convergent for |z| < p. This is a classical result that
can be proved by observing that |gf| < +F, |f(G(0))| < 3o;  IfelvFpt < 00 Tt
follows easily that

f(g(B)) =h(B) if |B| < p.

Taking f(z) = €?, g(2) =log(14+2) = 2 — %22,+ 322 — o rg=1h(z) = 1+2,
one obtains
e9B) =T+ B if |Bl<1. (7)

We come now to the proof. The equation eX = C holds if and only if
T-1eXT =T XT =T-'1CT (T nonsingular).

Therefore, one may assume that C has Jordan normal form. In fact, it can
be assumed that C has the form of a Jordan block, C = AI + F; cf. 17.VII and
18.V. If for each Jordan block Ji of C a matrix X with eX* = J; has been
found, one simply builds a matrix X by putting X in the place of J;. This
matrix X has the desired property eX = C.

Therefore, let C = AI + F, where A 5 0, since C is nonsingular. Since F
is nilpotent, F™ = 0, we can make |F| as small as we want by an appropriate
choice of the norm; cf. D.IV and D.VII in the Appendix. Hence we can use (7)
for B = F/)\ and prove that X = g(¥/\) + I'log A has the desired property:

eX = 2eIF/N = NI+ F/\) =M+ F=C.

We conclude this section with a theorem about the
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VII. Growth of Solutions in the neighborhood of a singular point.
Here we will restrict ourselves to the case where A(z) has a pole at z = 0. Let
K be a disk with a cut along the negative real axis; that is, K is the set of
all z with |z| < 7 for which Re 2 < 0 implies Im z # 0.

Theorem. Let A(z) € H(K?) have a pole of order m > 1 at z = 0. If w(2)
is a solution of (1) that is single-valued and holomorphic in K-, then there exist
positive constants a, b such that

alz|~®, for m=1,

€EK,. 8
ae’?’"" . for m > 1, or 2 € Ko ®)

lw(z)| < {

Remark. If w(z) is a single-valued solution in K?, then the estimate (8)
holds in K?/,. If w(z) is many-valued, then (8) holds for every branch of w

belonging to H (K, ). However, the constants a, b may depend on the chosen
branch.

Proof. By hypothesis, there exists a constant ¢ with
|A(2)] < clz|™™ for 0<l]?|<ea,

o =r/2. We now apply Corollary 21.III in G = K and note that G is simply
connected. We can set p(z) = c|z|™™ (the values of p(2) for |z| > a play no role
in the following argument). Let zp = a. If 2 is a point in K, then we connect
a and z using a path C that goes along the real axis from a to |z|, and then
along a circular arc from |z| to 2. Then, in the notation of 21.II, we have

P(2) < /(;p(C(s)) ds < /:; ct™™dt + c|z| ""xrz|.

The last term comes from the fact that the circular arc from |z| to z has length
at most |z|. Thus

clog—Oi + e for m=1,
P < |2|
cz|'™™(m—-1+7) for m>1.
Now the assertion follows from the estimate of Corollary 21.111,
|w(z) < 2|w(a)|e?P).
| |

VIII. Exercise. Determine a fundamental system of solutions for the
system

/ —
wy = we, Wy = —5—.

For which values of a are all solutions rational functions?
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§ 23. Weakly Singular Points. Equations of
Fuchsian Type

I. Definition. Let the matrix A(z) be single-valued and holomorphic for
0<|z—2| <7 (r>0). A point z = 2 is called a weakly singular point of the
differential equation

w = A(2)w (1)

if A(z) has a pole of the first order at the point z9. Thus, restricting again to
the case zg = 0, A(2) can be represented in the form

o0
Alz) = %ZA,:Z", with Ag 50, )
k=0

where the power series on the right-hand side converges in a disk |2] < 7 (r >
0). Here Ag, A,,...are constant matrices. Formula (2) can be interpreted as
matrix notation for n2 power series for the components a;5(z), whose radii of
convergence are all > r. The condition Ay # 0 means that at least one of the
functions a;;(z) has a pole at z = 0.

If Ag = 0, then A(2) is holomorphic at 0, and the point z = 0 is called a
regular point of (1). We dealt with this case in §21. If 2 = 0 is neither regular
nor weakly singular, then it is called strongly singular. The latter occurs if and
only if at least one of the functions a;;(z) has a pole of order > 2 or an essential
singularity at z = 0.

The conclusion of Theorem 22.V can be significantly sharpened for weakly
singular points. In this case the function U(z) that arises there is holomorphic
in the whole disk.

II. Theorem. If A(z) is holomorphic for 0 < |z] < r and if z = 0 is
a weakly singular point of the differential equation (1), then every fundamental
matriz has the form

W(z) = U(2)2", (3)
where U(z) is a single-valued, holomorphic function in K, : |z| <7 and B is a

constant matriz.

Remark. A representation of the form (3) is not unique. In fact, the relation
el = ] for a = klog z (k a whole number) implies that z*/ = z*I, and hence
also zFz~*! = I. Tt follows then from (3) that

W(z) = (U(2)2")2"~*, (4)

which is again a representation of the form (3).
Therefore, it is sufficient to show that a representation of the form (3) exists
where the function U(2) has, at worst, a pole at the point z = 0. If k is the
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order of the pole, then U(z)z* is holomorphic at z = 0, and the representation
(4) has the property required by the theorem.

Theorem II goes back to Sauvage (1886). More detailed historical informa-
tion on singular point theory can be found in the book by Hartman (1964),
pages 91-92.

Proof. Let W(2) be a fundamental matrix of (1). By Theorem 22.V (with
remark) W (z) has the form (3), where U(2) is holomorphic in K?. We consider
W{(z) in K, where K is the disk with a cut along the negative real axis, and
in particular the branch corresponding to the principal value of the logarithm.
On this branch we have the estimate

1
|log z| < log 7 +7  (jz| < 1).

Further, from the series expansion of the exponential function one obtains
leBs| < elBllsl, and hence

|28 < elBlllezl < ¢5|7#  with B =.|B|.
By 22.VII, the estimate
W (2)] < al2|"
holds for W(z) in K, with positive constants a, b, and therefore

[U(2)| = W (2)2~"| < alz[cl2|°.

This implies that U(z) has at most a pole at z = 0. |

Remark on Nomenclature. In the literature one finds different names for
a weakly singular point such as simple singularity (Hartman), singularity of
the first kind (Coddington-Levinson), and regular singular point (often in con-
nection with second order differential equations). Some authors define a regu-
lar singular point by the properties of solutions expressed in Theorem II. The
strongly singular point shares the same fate.

II1. Singularities at Infinity. A function f(z) that is holomorphic for
|z2] > r is said to have a zero or a pole of order k at z = oo if the same
statement applies to the function g(z) = f(1/z) at z = 0. And f(2) is said to
be holomorphic at the point z = oo if g(z) is holomorphic at z = 0.

We consider now the case where A(z) in (1) is holomorphic for |z| > r. If
w(z) is a solution of (1), then the function v(¢) = w(1/() satisfies

V() == () v )
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The point z = oo is called (i) regular or (ii) weakly singular or (iii) strongly
singular for (1) if the point { = 0 has this property with respect to equation
(5). This is the case if and only if in the Laurent expansion

1 [o o]
A <-) = Z Bka,
C k=—o00
(i) all By with k < 1 vanish or (ii) all By with k¥ < 0 vanish and B; # 0 or (iii)
not all B with & < 0 vanish.

IV. Theorem. Let A(z) be holomorphic for |z| > r. The point z = oo is
weakly singular or regular if and only if A(z) has a zero of first order or higher
order at infinity, respectively, i.e., if A(z) has an ezpansion of the form

B, By Bj
Az)=—+—F+—g+ (z>r)
with By # 0 or B; = 0, respectively.

Every fundamental matriz of (1) has the form

W(z) =U(2)22  if 2 = 0o is weakly singular,
W(z) =U(2) if z = oo 1is regular,

where U(2) is a single-valued, holomorphic function for |z| > r and z = oo, and
B is a constant matriz.

These statements are essentially proved by the discussion in III. Note that
since (1/z)8 = 27, a fundamental matrix V(¢) = U(¢)¢B ([¢| < 1/r) of
equation (5) gives rise to a fundamental matrix W (z) = V(1/z) of equation (1)
of the form given above.

Of particular interest are the

V. Equations of Fuchsian Type. Equation (1) is called a differential
equation of Fuchsian type if it has finitely many weakly singular points and if
every other point of C U {oo} is regular.

Theorem. Egquation (1) is a differential equation of Fuchsian type with weak
singularities at the (pairwise distinct) points z), ..., zx € C and possibly also
at oo if and only if

o0

Az)=Y ——R, (6)

2 — 2

k
where R; are constant matrices # 0. If Z R; = 0, then oo is a regular point;
=1
if the sum is # 0, it is a weakly singular point.
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Proof. The expansion of A(z) about a weakly singular point z; begins with
A(z) = (z— Zj)"le + -+, R; # 0. Therefore,

is holomorphic in €. Since co is either regular or weakly singular, we have
A(co0) = 0 by Theorem IV, and hence also B(co) = 0. Thus B(z) is bounded
and therefore by Liouville's theorem a constant. Then clearly, B(z) = 0, and
(6) follows. By Theorem IV, oo is regular or weakly singular if and only if the
limit of zA(2) as z — co is 0 or # 0, respectively. The assertion about the point
oo follows from this. |

Remark. The theorem shows that except for the trivial case A(z) = 0, every
differential equation of Fuchsian type has at least two weak singularities.

§ 24. Series Expansion of Solutions

In this section we investigate series expansions of solutions of the differential
equation

w = A(z)w (1)

in the neighborhood of a weakly singular point zp. In the process, we obtain not
only an algorithm for the computation of solutions, but we also gain a deeper
insight into the structure of solutions in view of Theorem 23.I1. We again assume
without loss of generality that 2o = 0.

First we consider power series, that is, vector-valued holomorphic functions
of the form -

oo
u(z) = Z uxz® with ug € C™. (2)
k=0

We use functional analytic methods to deal with the question of convergence
and to this end introduce a new Banach space.

I. The Banach Space H;. The set of all sequencesu = (up,u;,ug,...) =
(ug)g, ur € C*, with finite norm

o0
lull =" lul6* (6> 0 fixed)
k=0
forms a Banach space, which we denote by Hj.

It is easy to see that Hj is a vector space and || - || 2 norm. For example, the
triangle inequality follows from

Ta+ vl =" e+ viel6® < fuelé® + D [vilé® = ful| + ||v].
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To prove completeness, let u',u?,... with u® = (uf)g, be a Cauchy sequence
in Hg; that is, [[u™ — u®|| — 0 as m,n — co. Because

[uf* — u|6* < Ju™ —u"|| = 0 for k=0,1,2,...,

there exists v € C™ such that uf — v as n — oco. Let 3’ denote an arbitrary
finite sum. Then

/
> jug — uple < ™ ) <& for m,n > ng,
k

and hence

/
E [ul* —vi|6* <e for m>ng.
k

The same then also holds for the sum running from k& = 0 to oo; i.e., if we set
v = (Vg), then we have ||[v —u™| < € and, in particular, v —u™ € Hs. Thus it
is also true that v = (v —u™) + u™ € Hs and u™ — v in Hj.

By formula (2), an element u = (u)§° of Hs generates a holomorphic func-
tion u(z) on Kj : |z2|] < 8. Furthermore, the power series (2) is absolutely
convergent for z = 6 and hence absolutely and uniformly convergent in the
closed disk |z| < 6. Conversely, if u(z) is a holomorphic function in K5 whose
power series (2) is absolutely convergent for z = §, then the sequence of coeffi-
cients (uy)f belongs to Hy. In this sense, elements of Hs can be identified with
the functions u(z) generated by them.

II. Power Series Ansatz. Formal Solution. To obtain a solution of
(1), we make the ansatz

[>o]
w(z) = Zszk, w € C.
k=0
If A(z) has the form

A(z) = %Z At (0< 2] <), 3)
k=0

then (1) implies

o0 (oo} o0
z z kwizk~1 = (Z Akz"> (Z wizi) .
k=0 k=0

i=0
Forming the Cauchy product and equating coefficients of like terms, one obtains

k

kwi =Y Arjw; (£=0,1,2,...), @)
=0
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or, when the summand Agwy is brought to the left-hand side,
—AoWo = 0,
(I — Ag)w1=Awy,

: (4)
(kI - Ao)wk = AkWo +ee+ Alwk-l,

A formal solution is by definition a sequence (wy)$® that satisfies (4). If the
formal solution (wy) belongs to Hy, then the function w(z) = 3~ wyz* is holo-
morphic in K and it is a solution of (1), since term-by-term differentiation is
allowed.

III. Convergence Theorem. Let the series (3) converge for 0 < |z| <
r. Then every formal solution of (1) is a convergent power series for |z| < r
and hence is a holomorphic solution for |z| < r.

The essence of the proof rests on an investigation of the following

IV. Two Operators in Hs. Let two linear o;;erators A and J,, from
H; into itself be defined by

k
v=Au Vk':ZAk—-juj, (5)
j=0
0 fork<m,
v=Japu &&= vi= 6
k % for k > m. (6)

Here the Ay are the matrices appearing in (3). Clearly, (5) is merely a re-
statement of the multiplication v(z) = 2A(2)u(z) in terms of the sequence of
coefficients. We will prove the following two propositions:

(@) If C =) _ |Ak|8* < oo, then ||A|| < C; i.e., || Au|| < Clul| for u € Hs.
k=0

(b) The inequality || Jm|| < % holds form =1,2,...

Whereas (b) is obvious, proposition (a) requires a short calculation:

0 ) 0 k
Cliul=>_14:l6* > lusle? =" 65 |Aejlluy|
i=0 j=0 k=0 j=0
2 & lvil = ivll.
k=0
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V. Proof of the Convergence Theorem. Let W = (W) be a formal
solution of (1) and let § € (0,7) and m > C, where C is the constant in IV.(a).
We claim that the equation

w=JmAw+(v‘vo,v’vl,...,v‘vm_1,0,0,0,...) (7)
has exactly one solution in Hs. Indeed, J,, A is a linear operator, and by IV.(a),

(b),
mAw] < ~jaw] < Ejw] with <1
m m m

The assertion now follows from the fixed point theorem 5.IX.
The solution w of (7) satisfies the relations

wp=w, for k=0,1,...,m—1,

since the operator J,, sets the first m terms equal to zero. For £ = m, we have

1 m
W = E(Aw)m = MWy, = E 0A,m_jwj,
j= -

and corresponding results hold for k > m; i.e., w = (w) satisfies (4) and is
therefore also a formal solution.

The matrix Al — Ap is singular for at most finitely many A (the eigenvalues);
thus kI — Ay is nonsingular for large k, say k > ko. This means that for k > ko,
the equations (4’) can be uniquely solved for wy, or equivalently, the wj; with
indices k > ko are uniquely determined by the wj. with indices k& < ko. Thus, if
one chooses m 2> ko, then the relations wi = Wy for k < m imply that w = Wy,
for all k. Therefore, the formal solution W belongs to Hg, and the power series
converges for |z| < 6. Since 6 can be chosen arbitrarily close to r, proof of the
convergence theorem is complete. |

VI. Discussion of the Results. (a) Suppose A = 0 is an eigenvalue of
Aop. Then the first equation of (4), Agwo = 0, has a nontrivial solution wg (the
eigenvector corresponding to the eigenvalue A = 0). If kI — A is nonsingular for
k € N, i.e., if the numbers 1,2, 3,... are not eigenvalues, then (4) can be solved
uniquely; there exists a formal solution (wy) and it is a holomorphic solution in
K,.
(b) If the assumptions in (a) hold and if there exist several, let us say p,
linearly independent eigenvectors corresponding to the eigenvalue A = 0, then
p solutions can be calculated from the p eigenvectors, and these solutions are
likewise linearly independent, since their values at the point z = 0 are the
linearly independent eigenvectors just mentioned.

(c) Now let A # 0 be an eigenvalue of Ag. We make the ansatz

w(z) = 2 u(z)
to obtain a solution of (1). Then the equation

w' = A2 "lu(z) + 2/ (2) = A(2) 2 u(2)
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holds if and only if
u = (A(z) - /\71) u. (8)

In other words:

u(z) = z-*w(z) satisfies the same differential equation as w(z), but with
Ap replaced by Ag — Al

(d) Thus if A € C is an eigenvalue of Ag but A+ k is not an eigenvalue of A
for any k € N, then there exists a solution of the form

w(z) = 2* Zwkzk 9)
k=0

of (1), where wg # 0 is an eigenvector corresponding to A and the wy can be
uniquely determined from the equations

k-1
(A +E) — Ap)wi = D Ap—jw; ' (10)

j=0
(k=1,2,3,...). If several linearly independent eigenvectors are associated with

A, then the solutions obtained from them are also linearly independent.

VII. Generalized Series Expansions. In order to obtain series ex-
pansions of solutions that have logarithmic components and hence are not of
the form (9), we transform the differential equations as in §22 using z = e®. For
v(s) := w(e®) we obtain from (1) the differential equation

d_jlg = e*A(e")v(s) = (kgjo Akek8> v(s). (11)

Let P, be the space of all vector polynomials of degree < g,
p(s) =po +p15+-+-+Ppgs? with pr€C™

If we make the ansatz

v(s) = ivk(s)ek" with vi(s) € Py, (12)
k=0

then (11) reads

i(vfc + kvy)ek® = (i Akek’> (ivlel") . (13)
k=0 k=0 1=0
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Carrying out the multiplication on the right-hand side and equating “coeffi-

cients” of the terms e**, we obtain the system of equations
k .
V;c + kv = Z Ak—jvj (k =0,1,2,.. ) (14)
=0

In the case ¢ = 0, we get the power series expansion considered earlier, and (14)
reduces to (4).

As in II, we call a sequence v = (Vi )52, with v € P, a formal solution of
(11) if (14) holds. Our next objective is to prove the following

VIII. Convergence Theorem. Let the series (3) for A(z) be conver-
gent for 0 < |z| < r. Then every formal solution of (11) is a holomorphic
solution in the half-plane Rjog» : Res < logr.

More precisely: If one constructs a formal solution v(s) from (v), then the
resulting series is absolutely convergent in Riozr and uniformly convergent in
every compact subset of Riogr. Moreover, the same holds for the series obtained
by termwise differentiation and for the series ezpansion of e*A(e®), and hence
for all the series that appear in (13). It follows then from (14) that v is a
solution of (11).

The proof that follows is similar to the earlier convergence proof.

IX. The Banach Space H]. We introduce a norm |-|qin Py. If p(s) =
Po + - - - + Pgs9, we define

Ip(8)lg == |Po| + - - - + |Pqgl-

The space H{ is defined to be the set of all sequences u = (ug)$, ux € Py,
with finite norm

o0
lull == 3" Juglgs* (6 > 0 fixed).
k=0

A polynomial p(s) € P, can be identified with the n X (g + 1) matrix of its
coefficients (po, - - -, Pg). Thus the space HY is the same as the earlier space Hg,
where, however, here the u,, are matrices (or n(g + 1)-dimensional vectors). In
particular, by the considerations in I, H is a Banach space.

X. The Operators A and J,,. The operator A is defined as in (5),

k
v=Au v, = ZAk_juj,
=0
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where, naturally, u € H{ and hence uy, vi € P;. The definition of J,, is altered
as follows

0 for k< m,
v=Jaa <= v = 1 (15)
EDkuk for k> m,
with
pl pll
Dyp=p-FT+m -+ (p€FR,). (16)

The series has at most g + 1 summands that are # 0. The significance of the
operator Dy is that it solves a linear differential equation, namely

1
y(s) =z Dwp =y +ky =p, (17)

as is easily verified.

(a) The inequality || Au|| < C||u| holds with the constant C given in IV.(a).
The proof is exactly as in IV.(a). Note that if p € P, and B is a constant matrix
and if one takes the norm given above for P,, then

Bp =Bpo+ -+ Bpgs? = |Bply = |Bbo| + --- + |Bp,| < |B||pl,.

(b) It is easy to see that |p’|; < g|plq; hence there exists a constant C; such
that

|Diplqg £ C1lplq forall k€N, peP,.
It follows immediately that
ot < X u. :
(c) Convergence Proof. Let ¥ = (V) be a formal solution and 0 < § < r.
For sufficiently large m, the equation
v = JnAv + (¥o, ..., ¥m_1,0,0,...)

has exactly one solution v € H{. This follows from the fixed point theorem

5.IX if we choose m > CC}, because ||[JnAv| < %"Av" < %"v"

We will show that v is likewise a formal solution. First, as before, vy = ¥
holds for & < m. For k > m,

1 .
v = _IEka with p = (Av)g.

Therefore, by (17),

k
Vi +kvi=p=(Av), = ZAk_jvj,
=0
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i.e., v = (vy) is likewise a formal solution. It follows now from Lemma XI, given
below, that if m is chosen sufficiently large, then the elements v, with indices
k > m are uniquely determined by the v; with indices k¥ < m (in the lemma
p = vk and B = kI — Ay; hence B is nonsingular for large k). Thus v = Vi
holds for all k, and hence ¥ € H.

Now suppose M C Rjogr is a compact set. Clearly, there exists a constant
Cr such that

mﬁxlp(s)l < Cumlply-

Further, there exist constants 7, 6 with 0 < v < § < r such that M C Rjog~.
Thus, we have .

mﬁxlkvk(s)eksl < Cumkl|vielgY* < Culvile® (k> ko).

The uniform convergence of the series 3_ kv (s)e® in M follows from this in-
equality. Naturally, then, the series ) vxe*® and Y vie** are also uniformly
convergent in M, the latter because |p’|q < ¢|p|q- - [ |

XI. Lemma. Let B be a constant n x n matriz and q(s) a polynomial
vector of degree m. If B is nonsingular, then the differential equation

p'(s) + Bp(s) = q(s)

has ezactly one polynomial solution p(s), and it has degree m. If B is singular,
then there are several polynomial solutions; all have degree < m + rg, where 1y
15 the multiplicity of the zero A = 0 of the characteristic polynomial of B.

Proof. Setting p(s) = Tu(s), where T is a nonsingular matrix, one obtains
the differential equation for u

u+Cu=h with C=T"1BT, h=T"1q. (18)

Let T be chosen such that C has Jordan normal form. If the first Jordan block
of Cis J = AI + F with r rows and columns (notation as in 18.V), then the
corresponding equations read

u’1+)\u1=h1—u2

: 18’
U{,~_1 + A 1=he g —u, ( )

ul + Aup = h,.
These equations can be solved one by one, starting with the last equation.

If A = 0, then it follows that degree u, = 1+-degree b, < 14m, degree ur,_; <
24 m,...,degreeu; <7+ m.
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If A # 0, then the homogeneous equation 3’ + Ay = 0 has no polynomial so-
lutions, and therefore the nonhomogeneous equation y’ + Ay = h (h polynomial)
has exactly one polynomial solution, namely

1 h KW A
y=xDhEy et ot
cf. (16), (17), and degreey = degree h. Applying this result to (18’) shows that
(18" has exactly one polynomial solution (u1,...,u,)! and the maximal degree

of the u; is equal to the maximal degree of the h;.

If B is nonsingular, then all of the Jordan blocks have the form J = AI + F
with X # 0; if B is singular, then there exists at least one block where A = 0.
Using the solutions of (18') for the individual blocks, we construct a solution u
of (18) and then obtain p from the transformation p = Tu. |

XII. Construction of a Fundamental System. Asin VI.(c) we get

(a) v(s) is a solution to (11) if and only if u(s) := e~**v(s) is a solution to
the corresponding differential equation with Ag — AI in place of Ap.

(b) As a result, the ansatz

o0
v(s) =€ vi(s)e* with vie P, (19)
k=0

for a solution of (11) leads to a system of equations of the form (14) with Ag—AJ
instead of Ay, i.e.,

vh+ (M — Ag)vp=0
vi+ ((A+1)I - Ag)vi=Ayvo

: ; (20)
V;c + (()\ + k)I - Ao)Vk = AkVo +---+ Alvk_l
The first of these equations holds if and only if the function
¥(s) == e**vo(s) (21)
is a solution of the differential equation
¥'(s) = Aoy(s)- (22)

By 17.VII], equation (22) has a fundamental system of solutions of the form
(21), where X is an eigenvalue of Ag and vp(s) is a polynomial. For every such
solution y(s), the function vo(s) satisfies the first equation in (20), and the
remaining equations of (20) can be solved using Lemma XI. In this way, one
obtains a formal solution (vg) of the differential equation with Ag — AI in place
of Ag. By the convergence theorem VII, the formal solution is a solution; i.e.,
the function v(s) given by (19) is a solution of (11).
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(c) The n solutions of (11) obtained in this manner form a fundamental
system.

To prove the linear independence of these solutions, we first let s = ct with
t real and Rec = —1 and show that every solution v(s) of the form (19) can be
written in the form

v(s) = e**(vo(s) + 0o(1)) as t — oo, where s=ct. (23)
This is true, since there exists ¢p > 1 such that for every p(s) € Py,

lp(ct)| < [ploletl® < |plget/? for ¢2to.
Thus, because Rec = -1,

|vk(ct)ek°t[ < Ivque(—k+—;-)t < e—%tlvqué-k—l

with § = e~? < 1, and hence

o
Z v ( Ct) ekct
k=1

Now let A be an eigenvalue of Ay and yi(s) = e*vj(s), j = 1,...,m,
the m corresponding linearly independent solutions of (22). Obviously, the
polynomials v} are also linearly independent. If the corresponding solutions of
(11) are denoted by v¥(s), then by (23),

o0
< eI " |vilgt T = o(1).
k=1

D eivi(s) = e¥(p(s) +o(1)) with p(s)=D_ c;vi(s). (24)

=1 ji=1

If this linear combination is equal to zero, then p(s) + o(1) = 0. Therefore,
p(s) = 0, and consequently, ¢; = 0 for j = 1,...,m. This proves the linear
independence of solutions of (11) corresponding to a fixed eigenvalue.

Let Ap, ..., A be the distinct eigenvalues of Ag. A linear combination of all
n solutions of (11) can be written in the form

eX*(p1(s) +0(1)) + -+ + X *(pr(s) + o(1)), (25)

where the combination of solutions corresponding to a fixed A; are summed as
in (24). We assume that this linear combination (25) is identically zero and
have to show that pi(s) = --- = p,.(s) = 0. It then follows from what was
proved for (24) that all of the coefficients of the linear combination vanish. To
show that the p;(s) (1 < s < r) are zero, it is sufficient to determine ¢ with
Rec = —1 such that the numbers a; = ReAjc (j = 1,...,r) are all different.
This is certainly possible, since for each j, y = Re A;j(—1 + iz) is the equation
of a line in the real zy-plane, and these r lines have at most a finite number of
points of intersection. Thus we choose an z that is not the first coordinate of a
point of intersection and set ¢ = —1 + iz. Further, we number the eigenvalues
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such that a; > a2 > +++ > a,. Then |e*®| = e®*. Thus, setting s = ct in (25)
and multiplying by e~*1, we obtain

p1(ct) + o(1) + eP2 =2 (py(ct) + o(1)) + --- = 0.

1t follows that p;(ct) +0(1) — 0 ast — 400, because Re (A2 —Aj)c =z — a3 <
0, ..., and hence p;(s) = 0. This same argument gives, one after another,
P2 = -+ = pr = 0. This proves the linear independence. |

(d) Suppose v(s) is a solution of (19). Using the inverse transformation
w(z) := v(log z) and rearranging in terms of powers of log z, we get

w(z) = z*{ho(z) + (log 2)h; (z) + - - - + (log z)7h,(z)}, (26)

where h;(z) are holomorphic functions for |z| < r. If the Jordan normal form
of Ay is known, it is easy to estimate how large the powers of log z are.

As an example, consider

XIII. The case n = 2. Suppose A, u are the two zeros of the char-
acteristic polynomial det(Ap — AI) and ReA < Repu. Further, let h(z), h;(z),
... denote holomorphic functions, for |2| < 7. Then by VI.(d), there exists a
solution w(z) of the differential equation (1) of the form

w(z) = z*h(z2).

Further, there exists a second solution, linearly independent of the first, of the
form

W = 2*{h;(2) + (log z)h2(2)}. (27)

If A — u is not a whole number, then hy = 0. If A = u and there exist two
linearly independent eigenvectors for this eigenvalue, then again hy = 0. This
follows from VI.(d).

Thus a logarithmic part arises only if A is a double zero of the characteristic
polynomial with only one eigenvector or if u = A+ m with m € N. In the
second case, vy is constant in equation (20), namely, vy is the eigenvector of Ag
corresponding to A. The solution of (20) gives constant vectors vy, ..., V1.
If (A + m)I — Ay is singular, then in general, the mth equation of (20) is not
satisfied by a constant vp; ie., if £ > m, vi(s) is a linear polynomial (ha(z)
starts with the power 2™). In the case of a double zero A = p, vo(s) is already
a linear polynomial, and all remaining vi(s) can be uniquely determined from
(20) as linear functions of s; cf. Lemma XI.

The function z*hy(z), which multiplies log z in the formula for W, is itself a
solution of (1), hence a multiple of w. Therefore, the second solution W has the
form

Ww(z) = 2*h;(2) + cw(z)logz (c € C). 27

The proof is left as an exercise: Show that W' — A(z)% = z*~!(hz+hylogz) = 0
with h; holomorphic, and deduce from this that hy = 0.
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§ 25. Second Order Linear Equations
As an application of our theory we consider the linear differential equation
v +a(z)u’ +b(z)u=0 (1)

for a scalar function u(z). The usual transformation yields an equivalent first
order system

;L 0 1 ¢ ALY 0
R P N S

cf. (19.2). It is evident from the equation that if the functions a(z), b(z) have
at most a pole of first order at zg, then the point zg is either regular or weakly
singular.

However, a more general result is obtained if we transform (1) into a system
for wy 1= u(2), wa := (z — z9)u/(z). After a simple calculation, we get

1
_ w
w = fT w for w= ( 1) . (3)

- o - a(@) v

For this system, the point zp is still a weakly singular point if b(2) has a pole of
second order and a(z) has a pole of at most first order at zp.

I. Classification of Singularities. Let a(z), b(2) be single-valued holo-
morphic functions in a punctured neighborhood of z; € C, say 0 < |z — 2| < 7.
The point zj is called a regular point of (1) if a(z) and b(2) are both holomorphic
at zg. If zg is not regular and if a(z) has at most a pole of first order and b(z)
has at most a pole of second order, then z, is a weakly singular point of (1). If
neither of the previous cases holds, then the point zp is strongly singular.

If (1) is transformed into a system of the form (3), then the above classifi-
cation agrees with the one given in 23.1 for systems.

The classification of (1) at the point zp = oo is carried out as in §23 by the
change of variables { = 1/z. The result is the differential equation

d2v(¢) dv(C){2 1 (1)} 1 (1)

— =< =-—=als)r+=b|=]v()=0 4
zr " \¢me\g)rat\e)oe “
for v(¢) = u(1/z). As with systems in 23.III, we make the following definitions:
The point z = oo is called regular or weakly singular or strongly singular for

the differential equation (1) if the point { = 0 is of the corresponding type for
the differential equation (4).
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II. Theorem. Let a(2), b(z) be holomorphic for |z| > r. The point z =
oo s regular or weakly singular for (1) if and only if a(2) has a zero and b(2)
has a multiple zero at z = oo, i.e., if the ezpansions
a;  ag by | 23
=2+ 2 he, W)= 2424 (2> )
hold, or equivalently, if za(z) and 2%b(z) have finite limits as 2 — oo. In
particular, the reqular case holds if and only if
a1=2 and b2=b3=0.

This result follows immediately from a classification of the point { = 0 with
respect to the differential equation (4) with coefficients

02 tu(l), H0-3(3)

III. Examples. (a) Consider the differential equation
(z+2)2%u” + (2 + 2)u — d2u = 0;
the coefficients a(z) and b(z2) are the functions
4
z2(z+2)

The point z = 0 is strongly singular, 2 = —2 is weakly singular, z = oo is weakly
singular, all other points of C are regular.
(b) In the equation

a(z) = -21—2, b(z) =

(sinz)u” — 24/ + (e* —)u=0

the coefficients are

z e?—1
a(2) sin 2’ (2) sin z
Clearly, z = 0 is regular. The points 2 = k7 with k = £1,42,... are weakly
singular, since sin z has a simple zero at these points. The point 2 = co is an
accumulation point of singularities. Since it is not an isolated singularity, it
cannot be classified.

IV. Series Expansions. The Indicial Equation. Let 2 = 0 be a
weakly singular point of (1), i.e., let

1w 1 &
a(z) = S zakzk, b(z) = ) Zbkzk (0< |z <)
k=0 k=0

Then, in the notation of §24, the matrix in (3) is given by

A — 1 0 1 A 0 1
() = z (—zzb(z) 1— za(z)) ’ 0= (—bo 1- ao) . )
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The characteristic polynomial of Ay is

P()\) = det(Ao —Al) = A()\ + ag — 1) + bg. (6)

The equation P()\) = 0 is called the indicial equation for (1). Its roots A,
A2 (the eigenvalues of Ag) are called the exponents with respect to equation
(1). Suppose ReAz < Re);. Then we know from 24.XIII that there exists a
fundamental system of the form

ui(z) = 2h(z), ua(2) = 22 (ha(2) + ha(2) log 2), (")

where h, h;, are holomorphic functions for |2| < 7. A logarithmic part arises
only if Aj — A2 is an integer.

In the logarithmic case, the factor z*2hy(z) that multiplies the logarithm is
itself a solution to (1) and hence is a multiple of u;. Thus one can write (7) in
the form

u1(z) = 2™ h(z), uz(z) = uy(2)log z + 2 2Ry (2) - (7

in this case; cf. the exercise of 24.XTIII.

In calculating the series expansion one can use the recursion formula from
§24. However, it is often more convenient to substitute the corresponding series
into the equation and calculate the coefficients of powers of z directly. We
consider as an example

V. Bessel’s Equation

20" + z2u' + (22 — a?)u =0,

where o € C is a parameter with Rea > 0 (the latter is not a restriction, since
a can be replaced by —¢a). The results in I and II imply that the point z = 0
is weakly singular and the point z = oo is strongly singular. Since a9 = 1 and
by = —a?, the indicial equation is

PN =X-?=0= 1=, l=-c

The ansatz

o0
u(z) = 2* Zukzk with ug #0
k=0"
leads, after the coefficients of like terms are set equal, to the formulas

P,(A+k)ur+ur—2=0 for k>0 (withu_;=u_2=0). (8)

The requirement ug # 0 leads to the indicial equation P,()\) = 0.
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(8) | A=A, = a | If one sets, for instance, ug = 1, then the equations (8)

are uniquely solvable, since P,(a + k) # 0 for k¥ > 1. The condition u_; =0

implies that u; = ug = us = --- = 0. For even k = 2m, (8) reads
dm(m + a)ugm + u =0=u =i (9)
2m 2m—2 2m 4mm!(a ¥ 1)m .
Here we have used the notation
(Z)m i=z(z+1)(z+2)---(z+m—-1), (z)o=1,
in particular, (1), = m!. This leads to a solution u., defined by
el (_1)mza+2m
Ua(2) = e (10)
= dmml(a+ 1)m
(b) | A = A2 = —a, where A; — A2 = 2« is not an integer | This is the “nor-

mal case,” where no logarithmic part appears. Since P,(—a+k) # 0 for k € N,
(8) is again uniquely solvable. The relation (9) holds with —a instead of ¢, and
one obtains the solution u_q(2).

(€)| A=Az =—a witha=n+1 (n >0 an integer) |In this case too, the

series for u_q = U_,_1 is well-defined and represents a solution. Thus (con-
trary to expectation) no logarithmic part arises. In order to clarify matters,
we consider the recursion formula (8) with A = —a. For the critical index
k = 20 = 2n + 1 we have P,(\ + k) = 0, and hence (8) is given by

0- Ugn41 + Uon—1 = 0.

While this equation is not uniquely solvable for ugn4.1, it is nevertheless satisfied,
since all uy with odd index vanish. For even k, (8) is uniquely solvable, and one
obtains the above mentioned solution u_g,.

(d) | A=Az =—a witha=n €N | In this case the recursion formula (8)

breaks down for k¥ = 2n, and a logarithmic part appears. To determine the
logarithmic part, we apply the procedure in 24.VII. We consider v(s) := u(e®),
where u(z) is a solution of Bessel’s equation, and obtain the equation
d%v
ds?

for v(s). The ansatz

+(e*—-a?w=0

v(s) =eM ivk(s)eks (vi(s) linear)
k=0

leads to the recursion formula

P.(A+ k)i + Pa(A+ k)ve + ve—2 =0 for k>0, (11)
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where v_; = v_3 = 0 and P)()) = 2). Again, it is easily seen that v; = v3 =
vs = --- = 0. Beginning as before with vy = 1, we see that (11) has constant
solutions for 0 < k = 2m < 2n. Indeed, equation (11) reads (with & = —\ =n)

=)™

dm(m — n)vgm + vom—2 =0 == vo, = m 0<m<mn).
For k = 2n, one obtains

2nvh, + 0 von + v2p_2 =0,
which has the solution

V2n = ag(s + Fo) with ap = B 2 (12)

2n  4rpl(n—1)!

and fy arbitrary. For k > 2n we write k = 2n + 2m and v, as
Van42m = @m(s+ Bm) (m2>1).

Since Py (—n+ k) = 2(2m + n), P.(—n+ k) = 4m(m + n), (11) shows that_

(=1)™ao
4amml(n+1)m

dm(m+n)am + ap_1 =0 = a,, =
and

2(2m + n)am + 4m(m + n)amBm + Am—18m—1 = 0.
If we now replace am—_1 by —4m(m + n)a,, and divide by this same number,

then
2m+n 1/1 1
ﬂm—ﬂm—l—m—ﬂmq—'é(E-f-m_*_n),

and hence

%——Z( n+J>

Denote the partial sums of the harmonic series by

1 1
Hp=14;+ -+ =
2 m
and set fo = —3 H,. Then B, = —3(Hm + Hm4n). If we set ¥ = z, we obtain
the following solution of Bessel’s equation for the case o = n:

(o]
. (_1)m22m+n ( l)m 2m—n
= 1
n(2) 0708 zmz=:0 4mml(n+ 1), + mz=:o 4mml(1 —n)m

-2 Z (=1)™(Hm + Hn+m)22m+n
4mml(n+ 1), ’

m=0
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where aq is given by (12).

(€) | @ =0 | The solution that was just constructed is also valid for o = 0.
In this case the finite sum disappears. Note that the first equation (11) reads

0-vh+0-v =0,

while the remaining equations are uniquely solvable. The choice vy = 1 gives
up(z), while the choice vg = ags gives dp; cf. (a) and (d).

VI. Bessel Functions. Certain linear combinations of the above solu-
tions are considered on technical and historical grounds. The solutions

Jo(2) = _u"‘_(z)_ _ i mlr(;)m (z)2m+a

—2"‘1"(oz+1)_m___0 (m+a+1) \2
(e # —1,-2,...) are called Bessel functions of the first kind, and
(n—1)12" _ In2
Ya(2) = __ﬂ_—un(z) - mun(l)
n—1
2.z 1 (-1)™(n = 1)! sz\2m-n
N WIOgZJn(Z) T Z mi(l — n)py (5)

m=0

1 oo (—-1)m(Hm+Hn m) z\2m+n
‘%Z m!(n+m)!+ (5)

m=
(n = 0,1,2,...), are Bessel functions of the second kind. Note that the func-
tional equation of the gamma function, zI'(z) = I'(2+ 1), yields I'(e+m +1) =
I'(a + 1)(a + 1)x, in the series for J,. -
A fundamental system for Bessel’s equation in terms of Bessel functions is
given by
Ja(2), J_a(2z) if @ is not an integer,
Jn(2), Yo(2z) if @ = n is a nonnegative integer.

The linear independence of these solutions follows from 24.XII, but it can also
be verified directly without difficulty.

VII. Differential Equations of Fuchsian Type. Asin 23.V, equation
(1) is called a differential equation of Fuchsian type if finitely many points of
CU {0} are weakly singular and all the remaining points are regular.

Theorem. Egquation (1) is a differential equation of Fuchsian type with m
singularities z1,...,2m € C if and only if

- Tk 2) = e Sk i
=Y S(eprt).

k=1
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where T, sk, tk are constants with |rg| + |sk| + |tx| # 0 and
>tk =0. (14)

The point co is regular if and only if
m m m
Z'I‘k =2 and Z(sk + Zktk) = Z(2stk + z,%tk) = 0. (15)
k=1 k=1 k=1

Proof. If (1) is of Fuchsian type and 2; is a weakly singular point, we have

Tk _ Sk i1
a(z) = ——z o + hk(z)) b(Z) - (Z— Zk)2 + z—

Zk + lk(z),

where the functions hg, I are holomorphic at the point z;. Thus, if we denote
by A(z), B(z) the differences between the left and right sides of (13), then A(2)
and B(z) are holomorphic in C. Further, Theorem II implies that a(z) — 0 and
b(z) — 0 as z — oo, hence also A(z) — 0 and B(z) — 0 as z — co. Thus, by
Liouville’s theorem, the functions A(z), B(z) are constant, in fact, are equal to
zero. This proves (13).

By (13), 2b(z) — Y_tx as z — oo; however, we also have 2b(z) — 0 as
z — 00, and hence (14) holds. The equations (15) also follow from Theorem II
if one takes into account the following expansions about the point oo:

1 1,z 2

2z 322
+5+, k k
z

1
z—2+—£§+—;—+---.

z—zx z 22 (z—zk)2=

VIII. Exercise. Show that every Fuchsian differential equation with at
most one finite singular point zg € C has the form

Wt — =
z—2zg (z— 20)?

0

and give a fundamental system. Find the special cases in which (a) a logarithmic
term appears, (b) there is only one singular point.

IX. The Hypergeometric Equation
2(z—-1u" +{(a+B+1)z—v}' +afu=0 (e fB,7€C)

is a differential equation of Fuchsian type with three weak singularities at the
points 0, 1, oo (compare the exercise for exceptions). The indicial equation
corresponding to the point 0 is given by

AA+7—1)=0=>X =0, \g=1—7.
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The power series ansatz leads to the hypergeometric function

F(z;a,B8,7) = Z (iaf’g)ﬁ)kzk (¥#0,-1,-2,...)

as a solution. Here, (z)x := z{z + 1)---(z + k — 1). This series converges for
|z] < 1. If « is not an integer, then there exists a second solution of the form
u = z~7h(z) with h holomorphic at z = 0. It is easy to show that

u(z)=zl“"F(z;a—’y+1,ﬁ—’y+1,2—-'y)

is such a solution. If 7 is an integer, then A; — A is also an integer, i.e., we are
in the exceptional case, which will not be discussed here.

FEzercise. For which values of the parameters is 0 or 1 a regular point?

X. The Legendre Equation
(22 -1)u" + 220 —a(a+1)u=0 (aeC)

is likewise a differential equation of Fuchsian type. The points +1, —1, co are

singular. Thus there exists a series expansion about the point oo of the form
o0

u(z) = Zuks'\"k . In this way, one obtains the solution
k=0

Z( 1)k <°‘> <z> 2% (2a#£1,3,5,...).

@)

The series converges for |z] > 1.

A second solution i u_qg—3, since only a{a + 1) = (—a — 1)(~a) ap-
pears in the differential equation, where now it must be assumed that 2o #
—3,—5,—7,.... These two functions form a fundamental system for 2o #
41,43, 45,...; they are, up to a constant factor, the Legendre functions of
the first and second kind. If @ = n is a natural number, then the series for
u, terminates, and one obtains polynomial solutions, the so-called Legendre
polynomials.

ug(a) =

XI. The Confluent Hypergeometric Equation
2w+ (-2 —ou=0 (o,feC)

has the point 0 as a weak singularity and the point co as a strong singularity.
For § # 0,—1,—2,..., the confluent hypergeometric function (or Kummer’s
function)

o= 5 (2
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is a solution. Together with the function 2! P K (z;a — f + 1,2 ~ B) it forms a
fundamental system if 3 is not an integer.
The proof is an exercise.

XII. Exercise. Classify the singularities of the differential equation
220" + (3z+1)v +u=0.

Use the fact that the left side of the differential equation is a total differential
in order to find a fundamental system of solutions. Show that every solution
can be written in the form u = hy + hy log z, where the h; are single-valued and
holomorphic in C \ {0} but have an essential singularity at the point z = 0;
cf. in this regard Theorems 22.V and 23.II and the nature of the singularity at
z=0. :

Transform the differential equation using the change of variables { = 1/z,
solve the corresponding differential equation by series expansions, and compare
the two results. -

XIII. Exercise. Legendre Polynomials. If & = n is a nonnegative inte-
ger, then the solution u, of the Legendre differential equation given in X is a
polynomial of degree n. Show that up to a constant factor, this polynomial is
equal to the nth Legendre polynomial

d‘n.
T nl2ndzn
(Expand the power using the binomial formula and then differentiate.) Give
By, ..., Py explicitly.

P'n.(z) (22 - l)n

XIV. Exercise. Linear Differential Equations of Higher Order. (a) Us-
ing

wy =u, wy =2, wg = 22", ..., wp = 2" Lu*D),

transform the differential equation
™ 4o,y (2)u" Y+ ag(2)u=0 (16)
into a first order system
w = A(z)w.
Show that the point 2z = 0 is regular or weakly singular for this system if and
only if the functions z"~*a(z) are holomorphic in a neighborhood of the origin
(k=0,...,n—1). If this is the case and if the a; are not all holomorphic in
a neighborhood of the origin, then, in analogy to I, the point z = 0 is called
weakly singular for equation (16).
(b) Give a corresponding definition for regularity or weak singularity at a
point zg € C.
(c) Classify the singularities of (16) at oo as in I by means of the transfor-

mation ¢ = 1/z. Formulate the conditions on the coefficients for regularity and
weak singularity at oo in the special case n = 3.



Chapter VI
Boundary Value and
Eigenvalue Problems

§ 26. Boundary Value Problems

I. General. In a boundary value problem for an mth order differential
equation

u™ = f(z,u,...,u™D),

the n additional conditions that (we expect to) define a solution uniquely are
not prescribed at a single point a, as in the case of the initial value problem, but
at two points a and b that are the endpoints of the interval a < z < b where the
solution is considered. Boundary value problems for (real) linear second order
equations

v +a1(z)v +ap(z)u=g(z) for a<z <D (1)
are particularly important because of numerous applications in science and tech-
nology.

Boundary conditions. The three most common types of boundary condi-
tions for (1) are the boundary conditions of the

first kind: u(a) =, u(b) = ng,
second kind: u'(a) = m, U/ (b) = e,
third kind:  aqu(a) + o/ (a) =n1, Bru(d) + B2t/ (B) = 1.

Obviously, the first two conditions are special cases of the third, which is also
called a Sturmian boundary condition. There are also other boundary conditions
such as

ula) —u(d) =m,  u'(a)-v'(b)=mne-

When m = n2 = 0, these are called periodic boundary conditions for the fol-
lowing reason: If the coefficients are continuous, periodic functions with period

245
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I = b—a and if u(z) is a solution to (1), then v(z) := u(z + 1) is also a solution
of the differential equation (it follows from Theorem 19.I that every solution
exists in R). If u satisfies the periodic boundary conditions described above,
then v(a) = u(a) and v’(a) = w'(a). This implies u = v by the uniqueness
theorem for the initial value problem. In other words, u is a periodic function
with period 1.

Nonexistence and Nonuniqueness. In contrast to the initial value
problem, where general existence and uniqueness theorems are available, cases
of nonuniqueness or nonexistence arise in very simple boundary value problems.
Consider the simplest example: u” = 0. The solutions are linear functions
u(z) = a + bz. A boundary value problem of first kind is always uniquely
solvable, while one of the second kind has no solution if ; # 7. and infinitely
many solutions if 7; = no:

Ezercise. For which values of ¢;, §; is the third boundary value problem for
the equation «” = 0 in [0, 1] uniquely solvable? In the literature on boundary
value problems it is customary to denote the independent variable by z, since
in most applications it is a spatial variable. Although we will occasionally en-
counter complex-valued solutions in the discussion that follows, the independent
variable z is always real.

II. Boundary Value Problems of Sturmian Type. We now consider
the boundary value problem

Lu:= (p(z)v') +q(z)u=g(z) in J=la} (2)
Ryu = a1u(a) + azp(a)u/(a) = 1, )
Rou := Sru(b) + Bap(b)u'(b) = 72
under the assumption
) p € CY(J) and ¢, g € C°(J) are real-valued functions,
p(z)>0inJ and o?+a2>0, F?+6%>0.
The corresponding homogeneous boundary value problem is given by
Lu=0 in J, Riyu = Ryu=0. (4)

Remarks. 1. Self-adjointness. We have written the leading terms in the
differential operator L in the so-called self-adjoint form (pu')’ instead of the
form u” + a; 4 that appears in (1). The reason for this becomes apparent when
one considers the Lagrange identity (5). Using the notation of 28.II, formula
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(6) can be expressed in the form (Lu,v) = (u, Lv), which is analogous to the
relation (Az,y) = (z, Ay) for symmetric matrices in R™. This relation plays a
fundamental role in our treatment of the eigenvalue problem in § 28.

Equation (2) is equivalent to the following first order system for (y1,y2),

Y1 = v2/p, Yo = —qy1 — 9, where y =u, yp =pv/, (2)

which is also occasionally used.
This form of (2) also explains the appearance of the factors p(a), p(b) in (3).
2. The relationship between equations (1) and (2). Equation (1) can always
be transformed into the self-adjoint form (2) by multiplying by the positive
factor p(z) := exp ([ a1(z)dz):

p(v” + a1 + apu) = (pv')’ + papu.

Conversely, if p > 0 and p € C, then equation (2) can be written in the form
(1) by expanding the derivative

(pv') +qu=pu’ +p'v +qu.

3. Problem (2), (3) is named after Jacques Charles Frangois Sturm (1803-
1855), who was born in Geneva and spent most of his life in Paris, where he
was professor at the Ecole Polytechnique. Sturm developed the theory of this
boundary value problem, partly in collaboration with J. Liouville (1809-1882).
The problem also goes under the name Sturm-Liouville boundary value problem.

The Lagrange Identity. The great French mathematician Joseph Louis
Lagrange (1736-1813) discovered the identity

viu —ulv = {p(z)(v'v — v'u)} Lagrange identity (5)

(u,v € C?(J)) that carries his name. An important consequence of (5) is the
relation

b
/(vLu——uLv)d:z:=0 if Ru=Rwv=0 (i1=1,2). (6)

Equation (5) is easily verified, and then (6) follows from (5) and the observation
that (v'v — v'u) vanishes at both endpoints a and b. It is sufficient to consider
the point a. In the case a2 = 0 one has u(a) = v(a) = 0; if o # 0, then v/(a) =
éu(a), v'(a) = bv(a), where § = —a, /(azp(a)). In either case, (v'v—uv')(a) = 0.

Note that (6) also holds for the periodic boundary condition u({a) = u(b),
v (a) = v/ (b) if p(a) = p(b) (Exercise!).

Consequences of Linearity. Since the boundary value problem is linear,
the following simple propositions hold: -
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(a) A (finite) linear combination Y c;u; of solutions u; of the homogeneous
problem (4) is again a solution of that problem.

(b) The difference v; — vo of two solutions vi, vo of the inhomogeneous
problem (2), (3) is a solution of the homogeneous problem (4).

(¢) If u is a solution of the homogeneous problem (4) and v o solution of
the inhomogeneous problem (2), (3), then the sum u + v is e solution of the
inhomogeneous problem (2), (3).

(d) Let v* be a fized solution of the inhomogeneous problem (2), (3). Then
every solution v of the inhomogeneous problem can be written in the form

v=v"4u,

where u runs through all solutions of the homogeneous problem.

III. Theorem. Let ui(z), uz(z) be a fundamental system of solutions
to the homogeneous differential equation Lu = 0. The inhomogeneous boundary
value problem (2), (3) is uniquely solvable if and only if the homogeneous problem
(4) has only the zero solution u = 0. The laotter is true if and only if the
determinant

Rl Uuq R1 U2

0. 7
R2u1 R2’U,2 :,é ( )

It follows that condition (7) is independent of the choice of fundamental system.

Proof. The first part is an immediate consequence of II.(b). For the second
part involving (7) we choose a solution v* of (2). Then the general solution of
this differential equation is given by

v =1v" 4+ ciu; + cuo (61,62 S ]R)

The two boundary conditions (3) lead to a system of two linear equations for
C1, C2,

Ruv=Rv* +c1Rus +cRuy =1 (i=1, 2)
This system is uniquely solvable if and only if (7) holds. 2

Theorem III shows that a linear boundary value problem can be easily solved
when a fundamental system for Lu = 0 is known. When this is the case, a
solution v* of the inhomogeneous equation can be constructed (see 19.VII) and
the problem then reduces to the solution of a linear system of two algebraic
equations.

Ezample. (a) u”" +u=g(z)for0<z < m,

Ryu := u(0) + v'(0) = n, Rou := u(m) = 2.
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This problem is uniquely solvable for arbitrary 7, 72, g(z) because for the
fundamental system u, = cos z, uz = sinz the determinant in (7) has the value

Ry(cosz) Ri(sinz)
Ry(cosz) Rap(sinz)

11
-1 0

(b) In the special case g(z) = 1 we may choose v*(z) = 1. Then the general
solution of the differential equation is given by

v(z) =1+ c1cosz + czsinz.
Consider the case where 7; = 12 = 0. It follows from the boundary values
Riv=1+4cy+c1 =0, Rov=1-¢1=0
that ¢; = 1, c; = —2. Hence the solution of the boundary value problem is
v(z) =1+ cosz — 2sinz.
(c) If the boundary condition in (a) is changed to
Riu = u(0) =n, Rou = u(m) = 1g,

then the determinant in (7) vanishes. Now the homogeneous boundary value
problem has infinitely many solutions u = csinz, while the inhomogeneous
problem u” 4+ u = 0, u(0) = 0, u(7) = 1 has no solution.

1V. Fundamental Solutions. Let J = [a,b], let @ be the square J x J
in the z&-plane, and let

@1 Dbe the triangle a < €<z <b,
Q2 Dbe the triangle a <z <€<b.

Note that both triangles are closed and that the diagonal z = £ belongs to
both triangles. A function (z,£) defined in Q is called a fundamental solution
of the homogeneous differential equation (2) Lu = 0 if it has the following
properties (recall that p > 0):

(a) y(z,€) is continuous in Q.

(b) The partial derivatives vz, ¥z exist and are continuous in Q; and @ (on
the diagonal one has to take the one-sided derivatives from the corresponding
triangle).

(c) Let £ € J be fixed. Then 7y(z,£), considered as a function of z, is a
solution to Ly=0forz # &,z € J.

(d) On the diagonal z = £ the first derivative makes a jump of magnitude

1/p; ie.,

1
Yz (z+,T) —vz(z—,z) = —= fora<z < b

p(z)
Here, v.(z+, z) is the right-sided derivative of y(xz, £) with respect to z at the
point (z,z) (or, equivalently, the limit of v, when the point (z, =) is approached
from the right); the left-sided derivative v, (z—, z) is defined similarly.
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bt----

Q2

Q1

al----

o ft--=--

3] e m et mc e --

D f-—-=--

Lemma. Under the assumption (S) e fundamental solution exists, but it is
not unique.

Proof. Let u(z; £) be the solution to the initial value problem

Lu=0, u(¢)=0, v()=—= (E€J)

Then

0 for a<z<E&<b,
¥(z,€) =
u(z;€) for a<€<z<b

is a fundamental solution. Properties (a)—(d) are easily verified.
Now let g € C?(J) be a solution of Lg = 0, and let A € C°(J). Then the
function y;(z, &) = v(z, £) + g(z)h(£) is also a fundamental solution. |

Two Ezxamples. Using the notation ¢4 = max (0, a), one obtains
=0 = 9(z,8)=(z- &+,
W+ Nu=0 = 7(z,8)= :l\-sin/\(a: -8+ (0#XE€R).

Given a fundamental solution, it is easy to construct a solution of the inho-
mogeneous differential equation, as the following theorem shows.

V. Theorem. Let(S) from Il hold. If v(z,€) is a fundamental solution,
then

b
o(z) = / y(z,€)g(€) de ®)

belongs to C?(J) and is a solution of the inhomogeneous equation Lv = g(z).
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Proof. If the integral (8) is divided into two parts, an integral from a to
z and an integral from z to b, and each part is then differentiated, then one
obtains .

V(@) = 2z, + (2, €)9(E) d

a

b
(@, 2)g(z) + / 7a(2,€)9(€) de

b
= / e 2, £)g(€) de.

Applying the same procedure to this last integral and taking into account
property IV.(d) of the fundamental solution, one is led to

v ( :1:)

Te(o2)g(a@) + [ " el )9(6) dt

a

b
— ye(z—, 2)g(z) + / Yea (2, £)9(€) dé

’ g(z)
/a (2, €)0(6) de + §51

Since Ly = 0 by IV.(c), it follows that

b
Lv=p" +pv +qu= / Ln(z,£)g(€) d€ + g(z) = g(z).

a

VI. Green’s Function. Green’s function I'(z, £) for the Sturmian bound-
ary value problem (4) Lu = 0, Ryu = Rpu = 0 is defined by the following two
properties:

(a) I'(z,&) is a fundamental solution of Lu = 0.
(b) R;I' = RyT =0 for each £ € J® = (a,b).

It is assumed that the homogeneous problem (4) has only the trivial solution.
Our construction of Green’s function is based on determining two solutions
u3, ug of the homogeneous equation Lu = 0 satisfying the conditions

R1u1 = 0, Rz’u.z =0. (9)

The function u; can be determined as the solution of Lu = 0 with the initial
values u(a) = A, p(a)u'(a) = u, where (A, 1) # O satisfies the equation oy ) +
agp = 0. Constants A, p with this property are easily found. The function ug
is constructed in a similar manner. If u;, up are linearly dependent, that is, if
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Uy = 7yug, then it follows that u; also satisfies the second boundary condition
Ryu; = 0 and therefore is a nontrivial solution of the homogeneous problem
(4). This case has been excluded. Therefore, (u;,us) is a fundamental system
of solutions of Lu = 0. By Lagrange’s identity, the expression

c = p(ujuy — wjuy) is constant and # 0,

since the left side of (5) equals 0, and ujuy — ujus is the Wronskian of (uy,us),
hence # 0 by the results in 19.II. Green’s function can now be determined. It
is given by
1 [ w(ua(z) In Qr:a<{<z <Y,
D(z,€) == - { (10)

ul(m)ug(f) in Qz -a S T S E S b.

The properties (a), (b), (c¢) of IV are obvious for I'. The jump relation (d),
I.(z+,z)-C(z—,z) = 1/p(z), also follows without difficulty from the relations

cl'z(z+,z) = ui(z)uy(z), clz(z—, z) = ui(z)ua(z).

VII. Theorem. Let (S) hold. If the homogeneous boundary value prob-
lem (4) has only the trivial solution, i.e., if (7) holds, then Green’s function for
(4) exists and is unique. It is explicitly given by (10) and is symmetric,

I(z,£) =T(¢, 2). (11)
The solution of the “semihomogeneous” boundary value problem
Ly = g(z), Ryv=Rov =0,

which is unigque by Theorem 111, is given by
b
@) = [ T(z,€)9(6) de. (12
a

Proof. Theorem V shows that v satisfies the equation Lv = g. Since I
satisfies the homogeneous boundary conditions, this is also true of v, because
v’(z) can be obtained by differentiating under the integral sign (see the proof

of V), and therefore R; f: Igdt = f: RI'gd¢ = 0.
To prove uniqueness of I, we consider a second Green’s function I'V. Let

b b
ve)= [ T@00©) & ()= [ raone

with continuous functions g, k. Since R;v = R;w = 0 (i = 1,2), equation (6)
holds,

b
/ (vLw — wLv)dz =0.
a
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Inserting the expressions for v and w and observing that Lv = g, Lw = h, one
obtains

/:/: h(z)T(z,£)g(£) dz d€ = /:/: 9(z)T(z, £)h(€) d€ dz

and then, by interchanging z and £ in the second integral,
[[ e -Teans@ne dsde =0

Since this relation holds for arbitrary continuous functions g, h, the expression
in curly braces vanishes; i.e., ['(z,£) = I'(§,z). Now set I'' = I'. Then this
relation shows that ' is symmetric (this also follows from (10)). But then the
same relation implies that I' = I". |

Ezample. Consider the problem
Lu=v"=0 in (0,1}, Riu=u(0)=0, Rou=u(l)=0.
Equations (9) are satisfied by u; = z, up = z ~ 1, for which ¢ = 1. Hence

r 3 Ez—1) for 0<€<Lz<],
(@6 = z(€—1) for 0<z<E<L]

is Green's function for this boundary value problem. Since all solutions of
Lu = 0 are linear functions, the homogeneous problem (4) has only the zero
solution.

VIII. Linear and Nonlinear Boundary Value Problems. Theorem
VII gives an explicit formula for the solution to a semihomogeneous boundary
value problem. Green’s function for problem (4) can also be used to solve

(a) Inhomogeneous boundary value problems. Given an inhomogeneous prob-
lem (2), (3), one looks first for a function ¢ € C2(J) that satisfies the boundary
conditions R;¢p = 7; (¢ = 1,2). This is easily accomplished. Then the ansatz
u = v+ in the inhomogeneous boundary value problem leads to the equations

Lu=Lp+Lv=g, Ru=Ry+Rv=mn (i=12)
which are satisfied if v is a solution to the semi-homogeneous problem
Lv=h, Rjv=Rov=0, with h=g— Leo.

Assuming (7) holds, the solution v can be found using Theorem VII. Then
u = v +  is the solution of the given problem.
The importance of Green’s function goes further yet.

(b) Nonlinear boundary value problems. Consider the boundary value prob-
lem :

Lu= f(z,u) in J = [a,b] with Ryu = Rou =0, (13)

where f is continuous in J x R. We can transform this boundary problem into
an integral equation using Green’s function, as the following theorem shows.
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Theorem. The function u is of class C%(J) and a solution of problem (13)
if and only if u is continuous in J and satisfies the integral equation

b
u@) = [ T 06 ue) e in U 14)

The proof follows immediately from Theorem VII using g(z) := f(z, u(z)).
[ |

IX. Existence and Uniqueness Theorem. Assume that the function
f(z,y) is continuous in [0,1] x R and satisfies a Lipschitz condition

|f(z,y) — f(z,2)| < Lly — 2| with L < x>
Then the boundary value problem
u' = f(z,u) for 0<z<1, u(0)=u(l)=0

has a unigue solution.

The restriction on L in this theorem is sharp, i.e., the theorem becomes
false if L = w2, To see this, we consider the examples f(z,u) = —m%u and
f(z,u) = —w?(u + 1). In the first case, an infinity of solutions u(z) = Csinwz
exists; in the second case there is no solution (proof?).

Proof. We consider (14) as a fixed point equation of the form u = T'u, where
T is defined by

(Tw)(z) = /0 Tz, £) £ (€, u(€)) de.

Green'’s function I' is taken from the example given in VII. We consider this
equation in the Banach space B = C|0, 1] and apply the contraction principle.

If the norm in B is the maximum norm, then T satisfies a Lipschitz condition
1

with Lipschitz constant L/8, since / IT(z,€)|dz < 1/8. The theorem now

follows from the contraction pn'ncipleo5.IX for L < 8.

In order to obtain the general result, we consider the space B* of all functions
u € B that satisfy an estimate of the form |u(z)| < Csinmz (this implies in
particular u(0) = u(1) = 0). In B* we use a weighted maximum norm

[{ul||* := sup ll(_ﬂ < o0.
0<z<1 ST

The proof that (B*,||-||*) is a Banach space is left to the reader as an exercise.
If u,v € B*, then

| £(&: w(€)) — f(& v < Lu(é) — v(§)] < Liju— v||* sinwg.
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Th;arefore,

1
(T~ Tv)(@)] < Lifu— ol / IT(z, &) sinwé de.

We denote the integral term on the right-hand side by w(z). It follows from
I' <0 and Theorem VII that w” = —sinwz and w(0) = w(l) = 0, and hence
w(z) = (sinmz)/m%. This implies the estimate

L
|(Tu -~ Tv)(z)| < 7-l3||u — v||* sinwz.

. « L .
Dividing by sinwz leads to the inequality ||Tu — Tv||* < ;—Z-Hu — v|j*. This

shows that T is a contraction for L < w2. ||

Ezample. We consider the boundary value problem
u’ = g(z)e* in [0,1], u(0)=u(1)=0,

where g € C[0,1], and claim that there is one and only one solution if 0 <
g(z) < L <% in[0,1].

For a proof, we note that u” > 0, i.e., u is convex and therefore u < 0.
If f(z,u) = g(z)e¥, then f, = g(z)e* < g(z) < L < w2, since u < 0 can be
assumed. Hence f satisfies a Lipschitz condition with constant L < m2. ||

X. General Linear Boundary Value Problems. The theory devel-
oped so far carries over without difficulty to linear differential equations of order
n and, more generally, to linear systems of first order. We consider the boundary
value problem

Ly =f(z) in J={a,b], Ry=n, (15)

where
Ly:=y' — A(z)y, Ry :=Cy(a)+ Dy(b). (16)

Here, A, C, D are n x n matrices, and f, 7 are n-vectors; A and f are continuous
in J, while C, D, and' 7} are constant. All these entities are allowed to be
complex-valued.

Three ezamples. (a) Letting C = I, D = 0, gives the initial value problem
(14.8).
(b) For n = 2, the Sturmian boundary value problem (2), (3) is obtained
when y(z) is taken to be (u,p(z)u’)T and

0 1/p 0 a1 Q9o 0 0
I)= y JAZ) = 7C= ’ = .
A (—q 0) 7 (a) (0 0> ? (m ﬂ)

Observe that the system (2'), which is equivalent to (2), has been used here.
(c) The periodic boundary condition y(a) = y(b) is obtained by putting
C=-D=I,n=0.
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XI. Theorem. LetY(z)= (yi,--.,¥n) be a fundamental system ofsolu-
tions of the differential equation Ly = 0, where A(z) € C(J) is complez-valued.
Then the following properties are equivalent:

(a) The homogeneous problem Ly = 0, Ry = 0 has only the trivial solution
y=0.

(b) The matriz R(Y') = CY (a) + DY (b) is nonsingular, det R(Y') # 0.

(c) For given £ € C°(J), n € C", the boundary value problem (15) has a
unique solution.

Proof. The general solution of the inhomogeneous equation Ly = f is
y=z+ayi+- -+cyn=2+Yc, (17)

where z(z) is a solution of the inhomogeneous equation Ly = f and ¢ =
(€15...,¢n)" € C™ is arbitrary. The boundary condition reads

R(y) =R(z)+ R(Y)c=n. (18)

Hence problem (15) has a unique solution if and only if equation (18) has a
unique solution. The rest is simple linear algebra; notice that z = 0 in case (a).
|

XII. Green’s Operator and Green’s Function. Let C}, be the vector
space of all y € C?(J) satisfying the homogeneous boundary condition Ry = 0.
The semihomogeneous problem

Ly=f, Ry=0 (19)

can be formulated in another way: Look for a y € Ck such that Ly = f.
According to Theorem XI, this problem has a unique solution if and only if
det R(Y') # 0. Under this assumption,

L:CkL— C%J)
becomes a bijective linear map between the two spaces, and the inverse map
L7'=G:C%J)— Ck

is likewise linear and bijective. Expressed in terms of the operator G, the
function y := Gf is the unique solution of the semihomogeneous problem (19).
We look for an integral representation of G, i.e., an n X n matrix I'(z,{) such
that

b
y(@) = (69)(@) = | T(a8(6) de for £ € OYJ). (20)

The operator G is called Green’s operator and T correspondingly Green’s func-
tion or Green’s matriz for problem (19).
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To find Green’s function, we look back to the proof in XI. According to
(16.3),

2(z) = / “Y (@)Y () de

is a solution of Lz = f, and the boundary operator R is given by
b
R(z) = Ca(a) + Da(b) = Da(b) = D / Y)Y ~L(€)E(¢) d.
Q

Solving (18) with = 0 for ¢ leads to a solution y of (19) of the form
y(z) = Gf = z(z) — Y (z)R(Y) "' R(z).

If the above expresssions for z(z) and R(z) are inserted into this equation, we
get an integral representation for G. Since the integral for z(z) runs only from
a to z, we multiply the integrand by

1 for £€<uz,
@8 = 0 for £>z,

which allows us to integrate from a to b. In this way an integral representation
(20) is obtained, where Green’s function is given by

I(z,€) = c(z, )Y (2)Y ~1(§) - Y (z) R(Y) "' DY ()Y ~1(€)

21
=Y (z){c(z,£) — R(Y)"' DY (b)}Y ~1(¢). 21

XIII. Theorem. LetY(z) be a fundamental matriz for Ly = 0, where
A is continuous in J. If det R(Y) # 0, then Green’s function I'(z,£) for the
boundary value problem (19) is unique and given by (21). It has the following
properties (recall that Q1, Q2 are the closed triangles a < £ < £ < b and
a<z<£<b, resp.):

(a) If T(z, &) is defined to be I'(z+,x), the limit from the interior of Q1 on
the diagonal z = &, then T is continuous on Qy; it is continuous Qs if it is
defined to be I'(z—, z), the limit from the interior of Q2 on the diagonal T = €.
These limits satisfy the jump relation

I'(z+,z) - T'(z—,z) =1I.

(b) For fizted 6 € J, LT =0 in J \ {{}.
(c) For fized € € J° = (a,b), R(T') = CT(a,£) + DT'(b,£) = 0.
The properties (a)—(c) characterize I'(z,§) uniquely.

Proof. The properties in (a) follow immediately from formula (21). The
second summand is continuous in the set Q = J x J, while putting z = £ in the
first gives c(z,z)Y (z)Y ~1(z) = I. Property (b) follows similarly, since in each
of the two triangles @1, Q2, Green’s function has the form I'(z,£) = Y (z)S,
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where the matrix S is independent of z; cf. 15.IL.(h). To verify (c), we evaluate
R(I(z,§)),

R((z,€)) = R(c(z, §)¥ ()Y ~1(£)) — R(Y () R(Y) DY (B)Y ~1(£))
= DY(BY~1(€) - R(Y)R(Y) "' DY (B)Y (€)= 0.

Hence T satisfies (a)—(c). The proof of the uniqueness of I" uses the fact that a
piecewise continuous function h(£) that satisfies

b
/ h(€)f(€)d¢ =0 for all real-valued f € C°(J)

also vanishes in J (except for the points of discontinuity). This remains true
if h is complex-valued. One can show after a little thought that a piecewise
continuous matrix H(£) satisfying

/ b H(E)f(€)de =0 for all fe COJ) (%)

again vanishes in J. Now assume that I' is another Green's function. The
function H(¢) = I'(z,€) — I'(z,£), with z fixed, satisfies (). Therefore, since
z € J is arbitrary, I' = IV holds at all points of continuity of both functions. It
remains to show that the function I’ given by (21) is the only function with the
properties (a)—(c). IfI” is another function with these properties and if § € (a, b)
is fixed, then V (z) := I'(z, &) ~I"(z, £) is continuous in J (in particular at z = £).
The equation LV = 0, which holds for z # £ by (b), is also true for z = £ (for a
proof let z — £ and use Lemma 6.VI). Hence V' (that is, each column of V) is
a solution of the homogeneous boundary value problem and therefore vanishes
identically. |

XIV. Remarks. (a)Clearly, the theory developed in X~XIII applies also
to the real case, where A(z), C, D, f(z) are real-valued and L and G = L~!
are bijections between the real spaces Ck and C°(J).

(b) The above theory contains the earlier results obtained for the Sturmian
boundary value problem. To see this, define A(z), f(z), C, D as in X.(b). Let
L and (T;;) (4,5 = 1,2) correspond to this matrix problem, while L,, I'; denote
the Sturmian operator (2) and its (scalar) Green’s function. If y satisfies Ly = f
and u := ¥, then y» = pu’ and Lsu = g. The solution of the semihomogeneous
problem (19) is given by

wz) \ ¢ fTu T 0
(p(a:)u’(.’l:)) _/a (le I‘22) (9(5)) “
which implies

b b
u($)=/ T2 gdg, Pu'=/ Tap gdg.
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A comparison with Theorem VII shows that I';p = Iy, I'sp = pOl's/0z. Ac-
cording to the jump relation XIIL.(a), I';5 is continuous in @, while I'>» makes a
jump of magnitude 1 on the diagonal. This coincides with the properties IV.(a)
and (d) of Ts.

XV. Boundary Value Problems with Parameters. Holomorphy
in A. We consider the operator L depending on a complex parameter A,

Lyy :=y' - (A(z) + AB(z))y,

where A and B are continuous in J, together with the earlier boundary operator
(without parameter)

Ry := Cy(a) + Dy(b).

By Theorem 13.III, the solution y(z,A) to an initial value problem Lyy = 0,
y(a) = n (n independent of )) is an entire holomorphic function of A € C.
If n such initial value problems with linearly independent initial values are
solved, we obtain a fundamental matrix Y{z, ) that for every z € J is an
entire holomorphic function of A. It follows that ¥ ~!(z,)), the Wronskian
det Y(z, )), and the boundary operator

R(Y(z,)) = CY(a, ) + DY (b, ))

are also entire holomorphic functions of A. Hence either

(a) det R(Y (z,A)) =0 forall A € C; or

(b) det R(Y (z, ) # 0 with the possible exception of a finite or countable
set of values A = Ax. In the latter case lim |Ag| = oco.

In case (b), Green’s function I'(z,§, A) exists for A # Ak, and it is a holo-
morphic function of A\. This can be seen from the representation (21), since
R(Y(z,)))~! is holomorphic for A # Ax.

XVI. Exercise. Prove that Green’s function for the boundary value
problem
W+ u=0in [0,1], u(0)=0, u(l)=0
is given, for A > 0, A #£n?r? (n=1,2,3,...), by
1 sinvVA¢-sinVA(z—1), 0<é<z<1,
\/Xsin\/X'{ sinviz-sinvA(E—1), 0<z<E<]

and that the numbers A = n?7? belong to the exceptional case, where (4) has a
nontrivial solution.

The function S(z) = Z(—l)"z"/(% + 1)! is holomorphic in C, and sinz =
0

I(z, &) =

25(2%). Show that I' can be written as

1 { S)S(Nz —1))¢(z—-1), 0<€<a<,

I'(z,&A) = SO | SOZ?)S(AME-1)2)z(E—1), 0<z<E<,
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and that in this form it represents Green’s function for all complex A # n?n?
(n=1,2,...). For A = 0 the example from VII is obtained. Express Green’s
function for real A < 0 using the hyperbolic sine.

XVII. Exercise. (a) Solve the inhomogeneous boundary value problem
Wau=e i 0,1, u(0)=ul) =0

(a;) using a fundamental system of the homogeneous and a special solution of
the inhomogeneous differential equation; (as) using Green’s function.
(b) Determine Green’s function for the boundary value problem

1 .
u",+mu=0 in [1,2], w(l)=wu(2)=0.
Hint: The substitution z = e’ helps.

(c) Prove that the boundary value problem

v’ =g(z)sinu in [0,1], u(0)=wu(1)=0,

where g € C[0, 1] satisfies the inequality |g(z)| < 72, has a unique solution.
(d) Find Green’s function for «” = 0 in [0, 1], »/(0) = (1) = 0.

Supplement I: Maximum and Minimum Principles

Generally speaking, a maximum or minimum principle is a proposition on
maxima or minima of solutions of a differential equation or inequality. We
consider theorems of this kind for the operator Lu = (pu’)’ + qu. Instead of
assuming p € C?, u € C?, we make weaker assumptions. If u and pu’ belong
to C1(I), where I is an interval, we write u € Cp(I). As before, J = [a,b] and
J° = (a,b).

XVIII. Strong Minimum Principle. (a) Letp,q € C°(J°) andp > 0,
g <0 in J°. Suppose that u € CO(J) N Cp(J°) satisfies

Lu=(pu) +qu<0 in J°, u(a)>0, u(d)>0. (22)

Then (i) u=0 or (ii) » > 0 in J°.

(b) Suppose the assumptions regarding p, q, and u hold in J rather than in
J°, in particular p > 0 in J. Ifu > 0 in J° and u(e) = 0 or u(b) = 0, then
u'(a) > 0 or v/ (b) < 0, respectively.

(c) If u >0, then (a) and (b) remain true without the assumption q < 0.

Proof. (a) If minu < 0, then there is an interval I = [e, f] with u(a) =
u(f) =0 and u < 0 in I°. Since qu > 0 in I, we have (pu')’ < Lu <0, i.e., pu’
is decreasing in I. On the other hand, there are points in I close to a where
2/, and hence pv’, is negative, and points in I close to S where pu' is positive.
This is a contradiction; it shows that « > 0 in J.
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Now assume that u # 0 is not positive in J°. Then there is a point o € J°
such that u(c) = 0 and » > 0 in an interval to the right or left of . We
consider only the first case and assume that I = [o,a+¢] C J°, v > 0 in
I°;and p> 6 > 0,9 > ~K in I. It follows from u(e) = 0, v/(a) = 0, and
(pu') < Ku in I that

z z

u(z) = / W(€) de and (pu')(z) < / Ku(t) dt.
[+ [+

Let U(z) = max {u(t) : @ <t < z}. Then the last inequality yields p(z)u'(z) <

K(z — a)U(z) and hence v'(z) < c¢(z — o)U(x), with ¢ = K/§, and so the

preceding equation leads to

u(z) < c(z — @)*U(z).

Since there are points z with the property u(z) = U(z) arbitrarily close to «,
we have again arrived at a contradiction.

(b) The above proof applies also at a = a and shows that the assumption
u(a) = v/(a) = 0 leads to a contradiction.

(c) Let g~(z) = min {g(z),0} < 0 and L~ u = (pu’)’ + ¢~ u. Because of
u > 0, we have g~u < qu and hence L"u < Lu < 0. Now apply (a)to L—. W

In the next theorem g(z) is allowed to assume positive values.

XIX. Theorem. Letp,q € C°J) andp > 0 in J. Assume that u €
Cp(J) satisfies (22) and that an “auziliary function” h € Cp(J) ezists with the
properties

Lh<0 in J° and h<0 in J°.

Then (i) u=0, or (ii) u > 0 in J°, or (iii) u = —ph with u > 0.

Proof. The references to (a), (b), (c) refer to items in the preceding strong
minimum principle. The function d(z) = dist(z,0J) = min {z — a,b — z}
satisfies d'(a) = —d/(b) = 1. If u > 0 then, according to (c), (i) or (ii) holds.
If minw < 0, then the Lipschitz continuity of u together with the inequalities
u(a),u(b) > 0 leads to a lower bound u(z) > —vd(z) for some v > 0. If (b) is
now applied to h, one obtains h(z) > éd(z) with § > 0 because h(a) = 0 implies
h/(a) > 0. Both inequalities give u + Ah > (—y + Ad)d > 0 for large A. Let

p=inf {A>0:u+AR>0 in J}.

Clearly, 4 > 0 and v := u + ph > 0. Since Lv < 0, (c) and (b) imply v =0 or
v > vd(z), where v > 0. The first case leads to (iii), while the second case is
incompatible with the minimality of p. |

Ezample and Remarks. 1. Let u” + g(z)u < 0 in (0,%), where g(z) < 1,
and suppose u(0),u(r) > 0. Then u =0 or u > 0 in (0, ) or u(z) = —ysinz,
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where v < 0. Here, case (c) with A(z) = sinz applies. Note that « > 0 in (0, )
unless we have equality in all four inequalities of the hypotheses.

2. The eigenvalue case. Note that case (iii) in (c) can occur only if all
inequalities reduce to equations, i.e., Lu = Lh = 0 and u(a) = h(a) = u(b) =
h(b) = 0. If just one of these equalities is violated, then u = 0 or u > 0. The
situation is more clearly described in the terminology of eigenvalues (cf. § 27).
Case (ili) means that Ag = 0 is the first eigenvalue and 4o = h a corresponding
eigenfunction to the eigenvalue problem Lu + Au =0 in J, u(a) = u(b) = 0.

3. Continuity of ¢(z) is not needed in Theorem XVIII. The proof carries
through if ¢ is locally bounded in part (a) and bounded in part (b).

4. The above theorems have their counterparts for second order elliptic
differential equations. The alternative u = 0 or u > 0 in the interior is known as
the strong minimum principle, while the statement about positivity of normal
derivatives at the boundary, the analogue of XVIII.(b), is called Hopf’s lemma.
It was discovered in 1952 by Eberhard Hopf. A version of Theorem XIX under
the stronger assumption that h(z) > § > 0, which excludes case (iii), has been
known for a long time. In the sharper version given here (A > 0 only in the
interior) it goes back to Walter (1990) and has since been extended to elliptic
systems by various authors.

Ezercises. (a) Suppose p > 0 and ¢ < 0 in J°. Prove that if u € Cp(J°)
satisfies Lu > 0 in J° and has a positive maximum in J°, then u is constant.
This remains true if  has a negative minimum and Lu < 0 in J°.

(b) Prove that the strong minimum principle XVIII remains valid for the
operator Mu = az(z)u” + a3 (z)v’ + ¢(z)u in non-self-adjoint form if ay has the
properties of p, a; is continuous, and u is of class C? (in J° or J, resp.).

Hints. (a) Find an interval where pu’ is monotone. (b) Use the transforma-
tion in Remark 2 of II.

Supplement II: Nonlinear Boundary Value Problems

In IX a nonlinear boundary value problem was solved using the contraction,
principle. Here we shall employ Schauder’s fixed point theorem and other means
to accomplish the same purpose. Since Schauder’s theorem does not exclude the
possibility of several fixed points, new methods for dealing with the uniqueness
problem must be developed. First, we consider the boundary value problem

Lu= f(z,u,v) in J=[a,b], Riu=m, Rou=np, (23)
where Lu = (pu)’ + qu and R;, R; are defined as in (2), (3).
In 1935, the Italian mathematician G. Scorza Dragoni proved the following

XX. Existence Theorem. Letf = f(z,z,p) be continuous and bounded
in J x R?, and assume that the homogeneous problem (4) has only the trivial
solution. Then the boundary value problem (23) has at least one solution.
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This result is a special case of the next theorem, which deals with the
general nonlinear boundary value problem

y'(z) = A(e)y +f(z,y) in J=1[a,b], Ry=nm. (24)

The corresponding linear problem with f = 0 was treated in Sections X-XIII,
and we use the notation introduced there, in particular Ry = Cy(a) + Dy(b).
As before, y, A, and f are allowed to be complex-valued.

Existence Theorem. If f(z,y) is continuous and bounded in J x C"™ and
det R(Y) # 0, then the boundary value problem (24) has at least one solution.

Proof. Asin VIII.(a), one reduces the problem to the semihomogeneous case
7 = 0 by writing the solution in the form y = yq + 2, where yo € C'(J) satisfies
Ryqy = 71, and considering the corresponding semihomogeneous problem for z.
According to XII, in particular equation (20), y is a solution of (24) with n =0
if and only if y is a continuous solution of the integral equation

b
y=Ty with (Ty)(@) = | T(z (€ ¥(6) de. (25)

Schauder’s fixed point theorem is applied in the Banach space B = C(J,C")
with the maximum norm ||y|| = max {|y(z)| : z € J}. For y € B, f(z,y(z)) is
continuous in J; hence v = Ty, which is a solution of

v = A(z)v + f(z, y(2)), (26)

belongs to C}, C B; ie., T(B) C B.
The functions f, A, and I are bounded, say, |f|,|Al],|T'| < c¢. Therefore,
v = Ty satisfies by (25) and (26):

v(@)| = [(Ty)@)] <Pb—a)=:c, (27)
[v'(z)] € ca+e

These two estimates show that T(B) is bounded and equicontinuous and hence
relatively compact in B. It remains to show that T is continuous. Let (yx) be a
sequence that converges in B, i.e., uniformly in J, to z € B. Then f(z, yx(z)) —
f(z,z(z)) uniformly in J because f is uniformly continuous in bounded subsets
of J x C™. Since I’ is bounded, Ty, — Tz uniformly in J, which shows that T
is continuous. Now Schauder’s theorem can be applied. ||

XXI. Upper and Lower Solutions. If the nonlinearity f in the bound-
ary value problem (23) is unbounded, but upper and lower solutions exist, then
existence of a solution can be established by reduction to the case where f is
bounded. We will demonstrate this important method by proving the existence
of a solution to the first boundary value problem

Ly = f(:L‘, u) in J= [a’ b]1 u(a) =", u(b) = T2, (28)
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where Lu = (pu')’ + qu. Let v,w € C%(J). The function v is a lower solution
and w an upper solution for (28) if

Ly > f(:c,v), v(a.) <M, ”(b) < 7o,

Lw < f(z,'w), 'U)(G.) 2 m, 'lU(b) 2 723
note that in the differential inequality the direction of the inequality is reversed.
Existence Theorem. Assume that p satisfies (S) and that v is a lower
solution and w an upper solution with v < w. If f(z,z) is continuous in the

region K = {(z,2) :a <z < b, v(z) < z < w(z)}, then there exists a solution
u of the boundary value problem (28) between v and w.

Proof. We write the differential equation in the form (pu')’ = g(z, ), where
9(z,2z) = f(z,z) — q(z)z. We then extend g as a continuous function to the
strip J x R in such a way that g(z, z) is constant in z outside K. Let G be the
extension. By Theorem XX, the boundary value problem for (pu')’ = G(z,u)
has a solution, since the homogeneous problem (pu')’ = 0, u(a) = u(b) = 0 has
only the zero solution. We have to show that graphu C K. Assume to the
contrary that, e.g., u is not < w. Then ¢ = w—u is negative in an open interval
I° and vanishes at its endpoints. For z € I°,

®'¢") = (pw')’ - (pv')’ < G(z,w) - G(z,u) =0.

This is a contradiction to Theorem X VIIL. Hence u < w, and a similar argument
shows that v < u. It follows that graphy C K and therefore g(z,u(z)) =
G(z,u(z)); i.e., u is a solution to problem (28). |

Ezample. (cf. IX). The problem
v'= f(z,u) for 0<z<1, u0)=mn, ul)=mn
has at least one solution if f is continuous in [0,1] x R and satisfies
|f(z,u)| < A+ Blu| with B <72,
Proof. Let w = —v = acosy (z — 1), where B < 4% < n2. Then
w(z) > w(0) = w(l) = acos(y/2) >0 in [0,1].

Furthermore, w” < f(z,w) and v" > f(z,v) if
(:c - —;—) - y*w(z) < —A — Buw(z).

Choose a > 0 so large that A < (y2 — B)w(0) and |n;| < w(0). n

The following estimate uses a family wy (z) of upper solutions that is increas-
ing in X € o, B]. It was established by A. McNabb (1961) for elliptic equations
and is related to “Serrin’s sweeping principle.”
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XXII. Estimation Theorem. Assume that f(z,2) is continuous in Jx
R and locally Lipschitz continuous in z; that u € C%(J), wx € C?(J) for X €
A = [a,B); and that wx and w) are continuous in (z,\) € J x A. Suppose
further that wy is increasing in X. Let

(a) Lu > f(z,u) in J and Lwy < f(z,wy) inJ for a <AL,

(b) u(a) < wa(a) and u(d) < wi(d) for a <A LB,
where we exclude the case that equality holds everywhere in (a) and (b). Then

u(z) < wp(z) in J implies u(z) < we(z) in J.

Proof. There is a minimal x € A such that u(z) < w,(z) in J. Assume that
the assertion is false, i.e., that o < u. The function ¢ = w, — u satisfies

Ly = Lw, — Lu < f(z,w,) — f(z,u) = c(z)p.

Here c(z) = [f(z,w,) — f(z,w)]/(w, — u) for w, # u, and c(z) = 0 otherwise.
Our assumption on f implies that ¢ is bounded. Using the notation L*yp =
(p¥')' + (g — c)p, we get

w>0 and L*¢ <0 in J.

Theorem XVIII.(c) with Remark 3 in XIX implies ¢(z) > 0 in J°, since the
case p = 0 is excluded by our assumption in (a), (b). Now we shall derive a
contradiction by showing that u is not minimal, more precisely, that there is an
index v € (o, 1) with

w, 22U < wy—w, Jp. (%)

If p(a) > 0, p(b) > 0, then w(z) > e > 0in J, and (*) is easily established.
Now let p(a) = ¢(b) = 0, whence ¢'(a) > §, ¢'(b) < —6 by XVIIIL.(b). The -
function ¥ = w, — w, > 0 satisfies ¥(a) = ¥(b) = 0. If v is sufficiently close to
u, then 9/'(a) < 6/2, ¥'(b) > —6/2. Hence ¥(z) < p(z) fora <z < a+¢ and
b—e <z <b (e >0 and small). In the interval [a +¢,b—¢€] we have p > v > 0.
Moving v still closer to p if necessary, we may assume that (+) holds in this
interval and hence in all of J. The cases y(a) = 0 < (b) and p(a) > 0 = p(b)
are treated similarly. This reasoning shows that the inequality () holds in all
cases. The theorem follows. |

Remark. The example Lu = v"+u, J = [0,7], f =0, u =sinz, w) = Asinz
for 0 < XA £ 1 shows that the theorem is false without the provision regarding
equality in (a) and (b).

Ezample. The stationary Logistic Equation. The parabolic logistic equation
for u = u(t, z), z € R,

u = Au+ u(b—cu) in (0,00) x D,

models the density u of a population that is not evenly distributed in D C
R™ and subject to diffusion. If u depends only on t, the equation reduces to
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the logistic equation (1.16) u’' = u(b — cu). If u depends only on z, then the
stationary logistic equation Au + u(b — cu) = 0 is obtained.

We consider the case n = 1 and look for positive solutions of the boundary
value problem

u" +ub—cu)=0 in [0,1], u(0)=1u(l)=0,

where b and c are positive numbers (or functions of z). If 0 < b < #?, then the
family wy = dsinwz (A > 0) satisfies

wh + wa(b— cwy) = wa(b— 7% — cwy) < 0.

A positive solution u satisfies u(z) < wg(z) = Bsinnz for some B > 0. The
above theorem with A = [0, 8] shows that u(z) < we = 0. Hence a positive
solution does not exist. Now let b > 2. It is easily seen that v = esinwz (e
small) is a lower solution and w = const. > b/c an upper solution. Theorem XXI
shows that there exists a positive solution u between v and w, i.e., esinwz <
u < maxb/c. The uniqueness of this solution follows from our next theorem.

XXIII. Uniqueness Theorem. The function f(z,z) is assumed to be
continuous and nonnegative in J X [0, 00), locally Lipschitz continuous in z, and
such that f(z,z)/z is strictly decreasing in z > 0 for each z € J. Then the
boundary value problem '

v+ f(z,u)=0 in J, u(a)=m >0, ulb)=n>0

has at most one solution that is positive in J°.

Proof. Let u, v be two positive solutions and wy = Au, A > 1. We show
that v < fu = wpg for some B> 1. If p; > 0, n > 0, this is easily established.
If ;; = 0, then v/(a) > 0, since u is concave down (f > 0). It follows that
v'(a) < Pu/(a) for B large. Similarly, n; = 0 implies that |v/(b)] < Blv'(b)].
A moment’s reflection shows that » < fu in all of J for large values of 8. It
follows from the monotonicity of f(z, z)/z that the functions wy = Au satisfy
the conditions of Theorem XXII for A € A = [1, 8]. According to that theorem,
v < w; = u. Since the inequality u < v can be proved in exactly the same way,
it follows that u = v. |

We close this section with some considerations regarding

XXIV. Boundary Value Problems in the Sense of Carathéodory.
The theory of the general linear boundary value problem developed in X-XV
carries over to solutions in the sense of Carathéodory without change. It is
assumed that the components of A(z), B(z), and f(z) belong to L(J). A
solution z(z) satisfies the differential equation Ly = f(z) a.e. in J = [a,}].
Theorem 10.XII.(b) guarantees existence and uniqueness for the initial value
problem, in particular extistence of a fundamental matrix Y (z). The special
case X.(b) leads to the Sturmian problem (2), (3), where the general assumption
(S) is now replaced by the weaker assumption
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(Sc) | pis measurable, p(z) > 0 a.e. in J, and q,9,1/p € L(J).

A solution u of Lu = g is now a function with the properties that 3; = u and
y2 = pu’ belong to AC(J) and satisfy the system (2') a.e. in J. Note that we do
not require that p or «' be continuous, only that pu’ be absolutely continuous.
In the boundary condition (3), the value p(a)u'(a) is understood to be the value
of y» at the point a. Green's function T exists if (4) has only the zero solution;
it can be constructed as in VI.

Ezample. Lu = (y/zv')'. The functions u = 1 and u = /z are solutions of
Lu =0 for z > 0. For example, the boundary value problem

Lu=1in J=[0,1], (Vzu)(0)=1, u(l)=1

has the solution u = %:ca/ 242z~ %. Green's function for the corresponding
homogeneous problem is constructed as in (9), (10) with u;(z) = 1, ua(z) =

1—yz,c=~-1/2
l-yz in @: 0L€<z<],

1

T 8) 2{ 1-VEin Q: 0<z<e<l.

Ezercise. We consider the equation Lu = (z*v’)’ = 0 in J = (0, 1}, where
a < 1 (note that for & > 1 we have 1/p &€ L(J)).

(a) Find the solution with boundary values (a;) u(0) = 71, v/(1) = 72 and
(a2) (z°u')(0) = m, u(l) = ma.

(b) Construct Green’s function for both cases.

(c) Find the solution of the problem Lu =1 in J, (z*)(0) = 1, ¥/(1) = 0.

XXV. Strong Minimum Principle. Letp > 0 and ¢ < 0 a.e. in
J = [a,b]. Suppose the function u € C°(J) with u,pu’ € AC\oc(J°) satisfies

Lu=(pu') +qu<0 ae in J, u(a)>0, wu(b)>0.
Thenu >0 in J. If g € Lioc(J°), thenu =0 oru > 0 in J°.

The method of proof used in XVIII carries over. If u is negative in an
interval I°, then pu’ is decreasing in I°, which easily leads to a contradiction.
Hence u > 0. If u(a) = 0, u > 0 in o, + €], then (pu')(a) = 0, and as
in the proof in XVIII, p(z)v'(z) < U(z)Q(z), Q(z) = [ la(t)| dt, and, with
P(z) = [Z(1/p) dt, u(z) < U(z)Q(z)P(z). A contradiction is obtained as
before, since P(z)Q(z) = 0asz — a. |

Remark. The assertion that ©u = 0 or u > 0 in J° is false without further
assumptions on p and g. A simple counterexample is v = z2 in [~1,1] with
p=1, ¢g=—2/z? or with p = 22, ¢ = —6. But Theorems XVIII and XIX can
be generalized considerably for C-solutions; cf. Walter (1992).
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§ 27. The Sturm-Liouville Eigenvalue Problem

I. Formulation of the Problem. The Sturm-Liouville eigenvalue prob-
lem is of the form

Lu+ M(z)u=0 in J=]a,b], Riu= Ryu=0, (1)
where L and R,, Ry are the operators defined in (26.2-3)
Lu = (p(z)v)' +q(z)u, (2)
Riu = ayu(a) + agp(a)d'(a), Rou:= fru(d)+ Bop(b)u'(b). (3)
This is a homogeneous boundary value problem for the differential equation
(') + (g + drJu =0 | @

depending on a real parameter A (all functions are real-valued). In the eigenvalue
problem one is interested in those cases where (1) is not uniquely solvable, that
is, where not only the trivial solution « = 0, but also a nontrivial solution u(z) #
0, exists. This exceptional case does not hold for all A, but only for certain values
of A called the eigenvalues of the problem. Thus an eigenvalue is a number A
for which (1) has a nontrivial solution u; this solution is called an eigenfunction
corresponding to the eigenvalue A. An eigenfunction is determined only up to
a constant factor, since obviously ¢ -u(z) (¢ # 0) is also an eigenfunction. If (1)
has k, but not k + 1, linearly independent eigenfunctions for a given eigenvalue,
then the eigenvalue is said to have multiplicity k; if k = 1, the eigenvalue is
called simple.

Ezample.
v’ +Au=0, u(0)=u(r)=0.

It is easy to see that in the cases A = 0 (general solution © = ¢; + cpz) and
A = —u? < 0 (general solution u = c;e#* + cpe ™) the boundary value problem
does not have a nontrivial solution. In the case A = u? > 0 (general solution
u = ¢ cos ux + ¢y sin puz) the boundary conditions are satisfied if ¢; = 0 and
sin um = 0. Thus we obtain the

eigenvalues =10 (n=1,2,3,...)
and the corresponding
eigenfunctions  up(z) = sinnz.
An arbitrary function ¢ € C(J) with ¢(0) = ¢(w) has an “eigenfunction

expansion”

o0
o(z) = Z @, sinnz.
n=1
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This follows from a well-known theorem about Fourier series: If ¢ is extended
to the interval [—, 7] as an odd function, then the Fourier expansion of ¢ has
only sine terms. This simple example introduces two fundamental questions in
eigenvalue theory.

Ezistence of eigenvalues. Under what conditions do eigenvalues exist? Are
there infinitely many eigenvalues? Is there an asymptotic growth law (such as
An ~n? asn — —00)?

Figenfunction expansion. Under what conditions can an arbitrary function
be expanded into a series in terms of the eigenfunctions,

o(z) = Z anln(z)?

We will develop a theory that gives a satisfactory answer to both questions
under the following “Sturm-Liouville assumption”:

p(z) € C'(J);  q(=),r(z) € CO(J);

SL
(SL) p(z)>0,7(z)>0in J; o2+02>0, f2+42>0.

II. Existence Theorem. Under the assumption (SL) the eigenvalue
problem (1) has infinitely many simple real eigenvalues

A<Ai<A< -, Apg—+00 as n— 00

and no other eigenvalues. The eigenfunction un(z) corresponding to A, has
ezactly n zeros in the open interval J° = (a,b). Between two successive zeros of
un and also between a and the first zero and between the last zero and b there
is exactly one zero of un+1 (zeros on the boundary of J, which occur if ap =0
or B2 =0, are not counted).

III. Expansion Theorem. The eigenfunctions can be normalized in
such a way that i

b
/ r@@)dz=1 (n=012,..).
They then form an orthonormal set of functions, i.e., one has additionally that
b
/ 7(z)Um(z)tn(z) dz =0 for m #n.

Each function @(z) € C%(J) that satisfies the homogeneous boundary conditions
can be expanded in terms of the eigenfunctions in a series

¢(z) =) cnun(z)

n=0
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that converges absolutely and uniformly in J. This series is called the Fourier
series of @ (with respect to the u,). The Fourier coefficients ¢, are given by

b
Cn =/ r(z)o(z)un(z) dz.

There are several methods for proving these theorems. We will first present
a method that goes back to Priifer (1926). In this regard, we note that a
solution y(z) of a nonautonomous system y’ = f(z,y) can also be considered
as a parametric representation of a solution curve (or trajectory) in the phase
space R™; this point of view is adopted extensively for autonomous systems. In
the present case of a second order equation, we have n = 2 for the equivalent
system; hence trajectories are curves in the phase plane R?. The essence of
Priifer’s method is to represent these curves in polar coordinates.

IV. The Priifer Transform. The differential equation
Lu=(pu') +qu=0 (5)

can be represented in the form of an equivalent first order system for y; = u,
y2 = pu'; cf. (26.2'). It is customary to interchange y; and y, and to look for a
representation of the curve (p(z)v'(z),u(z)) in a £{n-plane (the phase plane) in
polar coordinates,

£(z) = pla)u(z) = plc) cos p(z), m(z) = u(z) = plz)sinp(z).  (6)

If u(zg) = v/(z0) = 0, then by Theorem 19.I, u = 0; therefore, the trajectory of
a nontrivial solution never passes through the origin. The functions £(z), n(z)
belong to C*(J), and it is not hard to see that there exist functions p(z) > 0,
w(z) in C1(J) such that (6) holds. One begins by defining

= 2 2 s = @ = .E(_x)
p(z) = /€2(z) + n%(z), (z) = arctan £a) arccot @)

To construct ¢, we first fix ¢(a), say, by requiring —7 < p(a) < 7. When
the solution curve is close to the £-axis, the arctan formula is used, and near the
7-axis, the arccot formula. When changing from one formula to the other, one
must choose a value of the (multivalued) arc function such that ¢ is continuous.
The function ¢ is uniquely determined up to an additive constant 2km (k an
integer). Additional details are given in A.IIL

In complex notation, {(z) = £(z)+in(z), the representation (6) reads simply
¢(z) = p(z)e'?®). The function ¢ is denoted by ¢(z) = arg((z) and is called
the argument function belonging to the solution u.

From the equations

€ =pcosp—py'sing, 7 =p'sing+py cosp
one obtains

7' cosp — &' singp = py,
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The argument function of Its geometric construction
u(z) = sinwz (w=2)

and further, since ¢’ = (pu')’ = —qu = —gpsinyp and 7’ = £/p = pcosp/p,
1 1 1
! = = cos? p + gsin? =——+—(q—->sin2 . 7
¢ =S8t tgsinty = p ® (7)
A similar argument yields
1 .
p = (Z—) - q) p cos wsin p. (8)

Thus we have arrived—and here lies the significance of the Priifer transform—
at a first order differential equation for ¢. Once ¢ is known, then p can be
calculated explicitly by a quadrature.

Let ¢ be the argument function of a solution u # 0. We make the following
observations concerning ¢ (k is always an integer):

() u(zo) =0 <= w(zo) = km and v'(zo) =0 <= (o) = kr + im.

(b) The function ¢y (z) = ¢(z) + 7 is an argument function for —u.

(c) pa(z) = p(z) + k7 is also a solution of equation (7).

(d) Ezample. The function u = sinwz (w > 0) is a solution of the differential
equation u” +w?u = 0. Its trajectory in the £n-plane is an ellipse with semiaxes
w and 1, and its argument function p(z) = arctan (w™'tanwz) satisfies the
differential equation

¢ =cos?p+w?sinp in R, ¢(0)=0.

This follows from ¢ = v/ = wcoswz, 7 = u = sinwz, (£/w)? + 7% =1, and (7).
The relation ¢(z) = wz holds for wz = Lkx. Since the functions p(z) and
we are increasing,

lo(z) —wz| < g in R.
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In the special case w = 1, the trajectory is the unit circle and ¢(z) = z.

The right-hand figure shows part of the unit circle U and the trajectory T in
the €n-plane with two points P = (coswz,sinwz) € U and Q = (v/(z),u(z)) €
T. Let O = (0,0) and E = (1,0). Then ZPOFE = wz and ZQOE = ¢(z).

(e) Exercise. Show that in the preceding example

é(z) <wzin (0,7/2w), ¢(z) > wzin (7/2w, 7/w)

for w > 1 and that for 0 < w < 1 these inequalities are reversed. Show also that
the function ¢(z) — wz is periodic with period 7/w.

Hint. Since P and Q have the same 7-coordinate, the first inequality can be
read off the figure. Draw a similar figure for each of the other quadrants and
for the case w < 1. .

In the next theorems two operators L and Lo with coefficients (p,q) and
(po, go) are considered. It is assurned that the conditions in (SL) hold for L and
Ly (in particular, p > 0 and po > 0 in J).

V. Lemma. Letpy = p, g < q in J = [a,b]. Let u, v be nontrivial
solutions of Lu = 0, Logv = 0 with the argument functions ¢ = argu, wo = argv.
Then wo(a) < (a) implies po < @ in J. More precisely:

(a) wo(a) < w(a) implies o < @ in J.

(b) wo(a) = p(a) and go # g implies po(b) < w(b).

Proof. Equation (7) is of the form ¢’ = f(z, @), where f(z,y) and 8f /Oy are
continuous. Therefore, f is locally Lipschitz continuous in y, and Theorem 9.IX
applies. The inequality wo < ¢ and (a) follow directly from 9.IX. Conclusion
(b) also follows easily, since (i) sin® p(z) > 0 if u(z) # 0 and (ii) u does not
vanish in any interval. e

VI. The Location of the Zeros. Let J be an arbitrary interval. As-
sume that the coefficients p, g of L satisfy 0 < p € C*(J), ¢ € C°(J) and that
the same is true for the coefficients po, g of Lg.

(a) A nontrivial solution u of Lu = 0 has only a finite or countable number of
zeros, and they are all simple. In the second case, the zeros have no accumulation
point in J. If v is another solution and v(zo) = u(zo) = 0, then v = const. - u.

Proof. Since u(zo) = u'(zo) = 0 implies u = 0 by uniqueness (19.I}, it follows
that all zeros of u are simple. Let u(zx) =0 (k=1,2,...) and limz, =€ € J.
It is easily seen that this implies u(£) = «/(€) = 0, hence u = 0 again, which is
a contradiction. The proof of the last assertion is straightforward. n

We derive now two central theorems on the distribution of zeros.

Sturm Separation Theorem. The zeros of two linearly independent so-
lutions of Lu = 0 separate each other.

This means that between two consecutive zeros of u there is a zero of v and
vice versa.
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Theorem of Sturm—Picone. Let pg > p, g0 < g in J. Let v be a nontriv-
ial solution of Lov = 0 with v(a) =v(B) =0 (a < B). If g0 # q in (a, ), then
every solution u of Lu = 0 has a zero in (a, 8).

Roughly speaking: If g is enlarged or p diminished, then the zeros come
closer together. Consider as an example the equation 4" + Au = 0 (A > 0) with
the solutions % = sin VA (z + ¢).

Proof. We may assume that o, § are consecutive zeros of v and v > 0
in (o, 8) (v can be replaced by —v). Then v'(a) > 0, v'(8) < 0, and the
corresponding argument function g satisfies pp(a) = 0, wo(B) = 7 (consider
the location of (ppv’,v) in the phase plane). In Sturm’s theorem we have L = Lg
and u(a) # 0, say, u(a) > 0. Then the argument function ¢ of u satisfies
0 < p(a) < 7, and Lemma V.(a) gives (8) > =. Hence there is zo € (a, 8)
with ¢(zo) = 7, i.e. u(zo) = 0; cf. IV.(a). This proves Sturm’s theorem.

This proof works also for the Sturm-Picone theorem if u(a) # 0. If u{a) =0
and, say, v/(c) > 0, then ¢(a) =0, and Lemma V.(b) implies again ¢(8) > .
Hence u has a zero in (e, ). a

Historical remark. In the special case p = py the Sturm-Picone theorem
was proved by Jacques Charles Frangois Sturm in 1836. The general form goes
back to Mauro Picone (1909). His proof is based on the Picone identity, which
generalizes the Lagrange identity in 26.11.

VII. Preliminaries to the Eigenvalue Problem. We consider the
solution u = u(z, A) of an initial value problem for equation (4),

Lu+4+ dru=0 in J, u(a) =sinq, p(a)u'(a) =cosa (0 < a<w), (9)

under the assumption (SL). The solution is unique and, by Theorem 13.II,
continuous in (z,A) € J x R (it is even holomorphic in A; c¢f. 13.III). The
argument function y(z, \) corresponding to u(z, A) is also continuous in (z, ),
and it satisfies equation (7) with g + Ar in place of g, i.e.,

tp’=%+<q—%+/\r) sin® p (10)

and ¢(a, \) = o. The argument function has the following properties:
(a) w(z, ) is strongly increasing in A€ R for a < z < b.
(b) w(b,A) — 0 as A — —oo0.
(¢) There exist positive constants §, D, Ao such that

§vVA < p(b,A) < DVA for A > .

(d) If w(zo, Ao) = kr (k € Z), then ¢'(zo, Ao) > 0. This means that in the
zy-plane (not in the phase plane) the curve y = ¢(z, Ag) crosses the line y = kw
at most once, and in a strictly increasing manner.
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Proof. (d) follows in an obvious way from (10), since p > 0.

(a) Let Ap < X\. We apply Lemma V with go, q replaced by g+ o7, g+Ar and
po = p. Since g + Aor < g + Ar, the inequality p(z, Xo) < ¢(z,A) fora <z <b
follows.

(b) To construct an upper bound for ¢, we use Theorem 9.IV on upper
solutions. Thus we are looking for a function w with

w' > f(z,w) and w(a)> o,

where f(z, p) denotes the right-hand side of the differential equation (10).

Let w(z) be the linear function with w(a) = # — ¢, w(b) = €. Here e > 0 is
chosen so small that & < w(a). We have sin®w > sin®¢, rp := minr(z) > 0,
and hence for A < 0,

flz,w) < 117 + (q-i—-;--i—)\'ro) sin?e — —oo for A — —oo0.

Since w' is constant, w satisfies the conditions for a supersolution if A < A* < 0.
Hence ¢(z,)) < w(z), and in particular, ¢(b,A) < € for A < Xg. This proves
(b).

(c) For purposes of comparison, we consider a problem with constant coeffi-
cients Do, qo, To,

pou” + (go + Aro)u =0, u(a)=0, u'(a)>0,

where pp = maxp(z), go = ming(z), ro = minr(z) > 0. For gg + Arg > 0, the
function ug(z, A) = sinwp(z — a) with wy = /(g0 + Aro)/Po is a solution of this
problem. According to Example IV.(d), with z replaced by z — a, the argument
function @o(z, A) satisfies

wo(b,A) = wo(b—a)+c with |c] < 7/2,

and this implies wq(b, A) > 8(b — a)V/A for large ) and, e.g., § = /r0/(2p0)-
Since wp(a,A) = 0 < p(a,)), Lemma V shows that (b, ) < (b, ), which
establishes the first inequality in (c).

For the proof of the second inequality, we consider again a problem with
constant coefficients p; = minp(z) > 0, g1 = max g(z), 1 = maxr(z). The so-
lution u; (z, A) = sinw, (z —a), w1 = y/(q1 + Ar1)/p1, has an argument function
w1(z, A) that satisfies 1 (a, A) = 0 and

p1(b,A) =wi(b—a)+e¢, | <m/2

We again apply Lemma V, but with  and ¢, in place of ¢y and . Since the
initial condition ¢(a, \) = @ < ;(a, A) = 0 is not satisfied in general, we change
over to the argument function ¢; (z, A) + 27 and obtain ¢(b,A) < ¢1(b, A) + 2.
This proves the second inequality in (c). |
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VIII. The Eigenvalue Problem. The first boundary condition
Riu = ayu(a) + azp(a)v'(a) =0

has a geometrical interpretation in the phase plane. It says that the vectors
(p(a)u'(a),u(a)) and (a2,a;) are perpendicular (their inner product vanishes).
Thus there is one and only one number a such that

aysina+azcosa=0, 0<a<m. (11)

T a
It is given by a = 3 + a.rcta,nal (¢ = 0 if oz = 0, otherwise the principal
2

value of arctan is used). In geometric terms, a is the angle between the positive

£-axis and the straight line through 0 perpendicular to the vector (ag, ;). If
u(z, A) is the solution of the initial value problem (9) with this value of ¢, then
Rju =0, and every solution of (4) satisfying Ryu = 0 is a multiple of u.

Likewise (and with a similar interpretation in the phase plane), there is a
unique number J satisfying

BisinB+ PycosB=0,_ 0<B<7 (11"

(note that if B2 = 0 here, then we use the value § = 7). The solution u(z, A) of
the initial value problem (9) satisfies Rou = 0 if and only if (p(b)v'(b), u(b)) =
const - (cos 3,sin ) and hence if and only if ¢(b,A) = B + n7 (n € Z). By
VII.(a)~(c) there is for each n > 0 exactly one A = A, such that

o(b,\n) =B +nm, n=012,...,

while for n < 0 no such A exists (this statement would be false if we had taken
B = 0 for the case Rou = u(b) = 0). The numbers A, are the eigenvalues we
are seeking, and the functions

Un () := u(z; An)
are the corresponding eigenfunctions. Property VII.(c) shows that
6%A\n < (B+ )% < D2),.

This inequality implies the following result on
Asymptotic Behavior. There are positive constants ¢, C such that

en? < A < Cn? for large n. (12)

This inequality proves and sharpens the first part of Theorem II.

Distribution of Zeros. By IV.(a), u, has a zero at z if and only if
¢(z,\n) = km. Now

0<p(g; ) =a<m and nr < @A) =nr+ < (n+ 1)

This inequality combined with VII.(d) shows that ¢(z; A, ) assumes the values ,
2w, ...,nw exactly once in J° = (a, b) and no other values of the form k7. Hence
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un has exactly n zeros in (a,b), which we label a < z; < T2 < --- < z, < b.
The Sturm—Picone theorem tells us that between z and 241 (k= 1,...,n—1)
there is a zero of u,;. Now, using VII.(a), we get

a= ()0((1, An) = ()0((1, An+1) <®= ()0(211, A11) < ()0(211, A‘n+1)-

Therefore, there is a zero of u,1 between a and z,. Similarly, one shows that
Unt+1 has a zero in (z,,b). Since there are n + 1 zeros, there must be exactly
one zero of un4 in each of the n + 1 intervals (a,z;), (Tk, Zk+1), (Zn,d). This
completes the proof of Theorem II. - |

The expansion theorem III will be proved in the next section, §28. There is
also a direct proof, which can be found in Kamke (1945) or Titchmarsh (1962).

IX. Comparison Theorem for Eigenvalues. Consider two eigenvalue
problems with data (po, 9o, To, @0, fo) and (p, g, T, o, B) satisfying (SL); the num-
bers a, ag or B, Bo determine the boundary conditions at o or b according to
(11) or (11'), resp. If the inequalities

p02p,0<¢qgro<r inJand 0<ap<a<m0<f<LF <7

hold with a strict inegquality in at least one place (e.g., To E T or ag < a), then
the corresponding eigenvalues satisfy

XN >N, for n=0,1,2,....

Proof. By Lemma V, we have (b, A) < ¢(b,A) for the corresponding ar-
gument functions. Since A0 is determined by (b, \2) = By + nw and A, by
(b, An) = B+ nmw < Bo + nw = (b, A2) and since (b, \) is strictly increasing
in ), the inequality A, < A2 follows. |

X. Oscillation. We consider (real-valued) solutions of Lu = (pu’)’ +
gu = 0 in a noncompact interval J. A solution u is said to be oscillating (in
J) if it is nontrivial and has an infinite number of zeros. The equation Lu =0
is oscillatory (in J) if it has an oscillating solution, otherwise nonoscillatory. If
the equation Lu = 0 is oscillatory, then by the Sturm separation theorem, every
nontrivial solution oscillates.

Oscillation Theorem. Consider the differential eguation Lu = (pv')’ +
qu =0 in J = [a,00), where p > 0 and q are continuous in J and such that

/:o[l/p(m)] dz = oo and /:o g(z) dz = oo.

(a) If g(z) =2 0, then the differential equation is oscillatory.

{o o]

(b) If for some o > 0 the integral L ag| dz < oo, then the differential

eguation is oscillatory and all solutions are bounded.
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Proof. (a) We have to prove that ¢(z) = argu(z) — oo as £ — oo. Equation
(7) 1mp11es that (p is increasing. Assume that limp(z) = ¢ < oo. Then either
sin’ c > £ or cos? ¢ > 1. In the first case there exists Zo such that sin® p(z) > 1
for z > :1:0 From equatlon (7) one obtains ¢’ > iq(m) which together with the
divergence of the integral [°° . qdz shows that lim ¢(z) = oo, contrary to our
assumption. A similar reasoning applies if cos? ¢ > 1.

(b) If we consider, instead of L, the operator BL with the coefficients § = Sp,
d = Bq and choose 8 = /o, then ag — 1/p = (g — 1/p). Thus we may assume
that a = 1 and that the integral of |¢ — 1/p| is convergent.

The differential equations (7), (8) for ¢ and p imply that

1
(pl = 5 + hl(m)7 pl = hZ(m)p7

where hy and hg are integrable over the interval [a,00). It easily follows that
¢(z) — oo as ¢ — oo and p(z) remains bounded. ]

XI. Amplitude Theorem. LetJ be an arbitrary interval, p,q € C*(J),
andp > 0, ¢ > 0. Further, let u be a nontrivial solution of Lu = (pu') +qu = 0.
Then every stationary point of u (point where u' vanishes) is an extremal point;
i.e., u has a local mazimum or minimum at that point. For two consecutive
extremal points T < Ty,

[u(zk)| 2 |u(zrt1)| if pg is weakly increasing
and similarly,
|u(zi)| < ju(zrsr)| of pq is weakly decreasing.

In short, the amplitudes are decreasing or increasing, when pq is increasing or
decreasing. If pg is strictly monotone, then the inequalities are strict.

Proof. The assertion about extremal points follows easily from the equation
Lu =0, taking into account g > 0. Consider now the function

y(z) :=u? + ﬁé(pu')z.

The derivative is

' /_(pq) "z 4 I_u_:_ ' _"£
v =l - Pty 4 - qu (pq>(q

2

SN’

Thus, y is decreasing or increasing whenever (pg)’ > 0 or < 0, resp. Since
u'(z) = 0 implies y(z) = u2(z) and u'(zk) = u'(Tr41) = 0, the conclusion
follows. |

In the following two sections the Sturm—Picone theorem is used to study
the oscillatory behavior of solutions and the asymptotic distribution of their
zeros. The coefficients p, ¢ of L and py, go of Ly are assumed to have the



278 VI Boundary Value and Eigenvalue Problems

usual properties (see VI) in an interval J = [a,00). Solutions are understood
to be nontrivial solutions; the zeros of a solution u of Lu = 0 are denoted by
) < T2 < z3 < ---. An immediate consequence of the Sturm—Picone theorem
isa

XII. Comparison Theorem. Letpg > p and q¢ < q in J. If the
equation Lou = 0 is oscillatory in J, then the same is true for the equation
Lu = 0. Egquivalently: If Lu = 0 is nonoscillatory, then so is Lou = 0.

XIII. The Distribution of Zeros. The differential equation
pov” +gov=0 (po>0, go>0 constant) (13)

has the solutions v = asinwg(z + 6), wo = 1/qo/po- The distance dg between
consecutive zeros is constant, do = m1/po/qo.
For ¢ > 0 we define

2c(z) = minp(t), P,(z)= maxp(t), where z <t <z +c,
and g.(z) and Q.(z) are defined similarly. As before, Lu = (pu')’ + qu.

Theorem. (a) Assume that g is positive in J and

.. Pc(z)
It =72

=A< o0 for c=mVA+e, (14)

where € > 0. Then equation Lu = 0 is oscillatory in [a,00).
(b) Moreover, if

:z:]ilgo ) xl—l—»IEo 0.@) <00 for c=mVA+E, (15)

then lim(zgy) — zx) = ™A for every solution of Lu = 0.

Proof. (a) There is a sequence (ax) tending to oo such that P.(ax)/gc(ax) <
A+ e for all k. Let v be a solution of (13) with coefficients pg = P.(ax),
go = gc(ax) and initial value v(ax) = 0. Then v(ax + di) = 0, where di, =
mv/Do/go < ¢. Since p(z) < po and ¢(z) > go in Ji = [ak, ax + dk), a solution u
has a zero in Jx by the Sturm-Picone theorem (k=1,2,...).

(b) It follows from (15) that Pc(zk)/qc(zx) < A+ € (k large), when (zi) is
the sequence of zeros of a solution v. Now the proof of (a) (with a; = z;) shows
that zx4+1 € Jx and hence 243 —zx < c. If A =0, then lim (2441 — 2¢) =0
follows.

Now let 0 < B < A. It follows from (15) that p.(zx)/Qc(zx) > B. We
shall prove that zxy; — 25 > 7VB (k > ko). Assume to the contrary that
Trpy — 2 < TVB < ¢ (r > ko). Let po = pc(zr), go = Qc(z,). Then the
difference dy of consecutive zeros of a solution v of (13) equals m1/po/go > 7VB.
But this is a contradiction to the Sturm—Picone theorem, because py < p(z) and
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go > g{z) in J.. It shows that zx4; — T > 7r\/§, as asserted. Since we can
assume that B is arbitrarily close to A and € > 0 in (15) can be chosen arbitrarily
small, part (b) is proved. |

The class S. The function g belongs to the class S if it is continuous and
positive in an interval [a, c0) and

i 2@

=1 for every ¢ > 0.
Z~—00 qc(z) y

Corollary. If p and g belong to the class S and

i 20 _

T~ 00 q(z) - A’ (15l) :

then (15) holds. It follows that the equation Lu = 0 is oscillatory and that for
every solution, Ty, — T — TV A as k — 0.

(¢) Properties of the class S. (i) If f and g belong to S, then af (a > 0)
and fg also belong to S. (ii) If f is continuous and f(z) —» a > 0 as z — oo,
then f belongs to S. (iii) If f belongs to S and h = o(f), i.e., h(z)/f(z) — 0
as T — 00, then f + h belongs to S.

(d) All functions z* (@ € R) and all polynomials that are positive for large
z belong to S, but e** does not (o # 0).

() If for some ¢ > 0, Qc(z)/gc(z) — 1 as £ — oo, then g belongs to S.

Ezercise. Prove the corollary and (c)—(e).
(f) Consider the equation
Lu = (z°v') + g(z)z*u =0 in [1,00),

where « is any rea] number and g{z) — 8 > 0 as £ — 0. Then p and q belong
to S. Since limp/q = 1/, the equation is oscillatory and zj4+1 — zx — 7/v/B
as k — oo.

(g) The Bessel equation

?u + zu' + (2% —a®)u=0

is oscillatory in [1, 00). Every solution u satisfies an inequality |u(z)| < C//z,
its amplitudes are strictly decreasing, and lim (2,43 —Z) = 7. These properties
hold for all real .

Ezercise. Give a proof of (g). Hints: Write the equation in self-adjoint
form and apply (f) and the amplitude theorem. Show that the function z(z) =
VT u(z) satisfies a differential equation 2"’ + gz = 0 and use Theorem IX.(b) to
prove that z is bounded.

In order to apply the oscillation theorem to general second order equations,
the following transformations are helpful.
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XIV. Transformation Formulas. (a) The differential equation
u" + dy(z)u’ + ao(z)u = h(z)

is transformed by

v(z) = u(z)e? @, A(z) = %/al (z) dz

into the following differential equation for v,

"+ (ao(:z:) - %ag (z) - %a?(z)) v = h(z)eA®,
(b) The differential equation

(p(z))' + g(z)u = h(z)

transforms, after a new independent variable

t=t(z):=/£—)-

with the inverse function z(t) is introduced, into a differential equation for

u(t) == u(z(t),

d?v

= + p(z)g(z)v = p(z)h(z) with z = z(t).

The inverse of ¢(z) exists because p > 0. Proof as an exercise.
(c) Use (a) to transform the differential equation

zu' —u +z2u=0
and then write the equation in self-adjoint form (see 26.II) and transform it
using (b).
XV. Exercise. For which values of a, 3,7 € R is the differential equa-
tion
(ea:::ul)l + ')'eﬂzu =0
oscillatory in [0,00)? Incidentally, the answer shows that Theorem XIII.(b)

does not hold with the weaker assumption (15'). Hint: In the case @ = § the
solutions can be given explicitly.
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XVI. Exercises. (a) Consider the eigenvalue problem
w+Adu=0 for 0<z<1, wu(0)=u(0), u(l)=0.
Determine the eigenvalues and eigenfunctions and show that
\/X;=%+mr+ﬁn (n=0,1,2,...), where 8, |0 (n— o0).

Draw a sketch of u¢ and u;.
(b) Determine the eigenvalues and eigenfunctions if the boundary conditions
in (a) are changed to

u(0) ='(0), u(l)=7v'(1).

c) Solve the eigenvalue problem
g
(zu') + % v=0in [I,7], «/(1)=0, u'(e*")=0.

Is A =0 an eigenvalue?
(d) Show that assertion (b) of Lemma V is true if ¢ = go and p < po unless
u'= v = const.

XVII. Exercise. Determine all solutions of the differential equation

u"+;a§u=0 (x € R)

and all values a for which the differential equation is oscillatory (substitute
z = et). Using the Sturm~Picone theorem, prove the following

Oscillation Theorem. The differential equation
v’ +g(z)u=0

(q(z) continuous for T > a) has the following properties in [a,00):
(a) It is oscillatory if lim inf z?q(z) > 1.

. . . . 2 l
(b) It is nonoscillatory if h;l_lf;p z?q(z) < 5.

Supplement: Rotation-Symmetric Elliptic Problems
We first investigate radial solutions of
Au+Xu=0in B, u=0 on 9B, (16)

where B is the unit ball in R”, and then turn to the nonlinear boundary value
problem Au = f(u) in B, v = 0 on 6B. As in the supplement of §6, we use
the operator L, of 6.XII for real & > 0 (o = n — 1 gives the radial A-operator).
Observe that

Loy = f(z,y) <= (%) =2f(z,y).
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XVIII. The Eigenvalue Problem. Let y be the solution of the initial
value problem

(z%y') +z%y=0, y0)=1, ¥({0)=0 (a=0). (17)
It exists in [0,00), is uniquely determined, and oscillates; cf. Theorem 6.XIII
and Example XIII.(f). The zeros of y are denoted by 0 < §p < & < & < -+ -
According to XIIL(f), k41 — & — m, which implies & /(kw) — 1 (k — c0).
The eigenvalue problem
(z*u) +Az®u =0, ¢'(0)=0, u(l)=0 (18)
is easily solved, since u(z) = y(Bz) satisfies (z*u')’ + f2z%u = 0, v/(0) = 0 and
u(1) = y(B). One obtains the
(a) eigenvalues A, = £2 with eigenfunctions u,(z) = y(£.z),
(b) asymptotic behavior of eigenvalues, A, /72n% — 1 as n — oo, and

(c) distribution of zeros of the eigenfunctions as described in Theorem II.

Ezercise. Show that there are no other eigenvalues. Hint. Assume that A
and v # 0 satisfy (18) and show: (i) u(0) # 0, hence one may assume that
u(0) = 1; (ii) if A < 0, then u > 0 implies u’ > 0; if A = 8% > 0, then u = y(Bz).

XIX. The Boundary Value Problem. For the linear equation L,y =
f(z) the solution of the boundary value problem

(e=) =2%f(z) in 0,1, w(0)=0, u(1)=0 (19)
is given by (6.10-12):

y(@) = (af)(@) ~ Taf)(1) = / I'(z, )% (€) d.
Since
(Iaf)(@) = / [h(z) - h(E)JE*F(€) dé, where h(z) = / = ds,

Green’s function is given by I'(z,£) = h(z) for £ < = and h(¢) for £ > z.
The function £€2T(z,&) is continuous in the square [0,1]2. The three existence
theorems in 26.IX, XX, and XXI now carry over to the present case:

Existence Theorem. (a) If the function f(z,2) is continuous in the strip
S =1[0,1] x R and satisfies a Lipschitz condition in z with a Lipschitz constant
L < Ao = €2, then the boundary value problem

(z°u') = z%f(z,u) in [0,1], v'(0)=0, u(l)=19n (20)
has ezactly one solution.
(b) If f is continuous and bounded in S, then (20) has a solution.
(c) Let v be a subfunction and w a ‘superfunction and v < w in [0,1]. If
f(z,2) is continuous in K = {(z,z) : 0 < z < 1, v(z) < z < w(x)}, then
problem (20) has a solution between v and w.
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Sub- and superfunctions are defined as in 26.XXI,
(z*w') < f(z,w), w'(0) =0, w(1) >,
(z*') > f(=z,v), v'(0) =0, v(1) <.

Proof. (a) As before, we may assume that 7 = 0. In this case, (20) is
equivalent to the fixed point equation

w=Tu, where (Tu)(z) = /0 Tz, £)€° £ (€, u(€)) de. (21)

We consider the operator T in the space X consisting of all functions in C°([0, 1])
with a finite norm

[lv]| = sup {%:OSIESI};

recall that the eigenfunction ug is positive in [0,1). For v,w € X the Lipschitz
condition on f implies

[T — Tul(z) < Lijv — wl| / Iz, £)6uo(E) de.

The eigenfunction wg is the solution of (20) with 7 =0 and f = —Aopuo; hence

1
uo(2) = o /0 Iz, £)€%uo(€) dt.

Since I < 0, it follows that
|Tw — Tv|(z) < gllw — v|luo(z), g=L/Ao<1.

Hence ||Tv — Tw|| < g||v — w||, and the contraction principle applies. |

Remarks and Exercises. 1. Prove (b) and (c); the proofs from § 26 carry
over.

2. Replace the second boundary condition in (19) by Rou = Biu(l) +
B2u'(1) = 0 and in (20) by Ryu = 7 and treat the linear and the nonlinear
boundary value problems in a similar way.

3. It may seem surprising that the eigenvalues in (18) have the same asymp-
totic behavior for all @ > 0. But one should be aware that for large values
of z the term cau’/z becomes small and the differential equation is essentially
u" + Au = 0, which corresponds to the case a = 0.

4. The book Comparison and Oscillation Theory of Linear Differential
Fquations by C.A. Swanson (Acad. Press 1968) contains many results on os-
cillation of solutions and asymptotic distribution of eigenvalues, together with
historical remarks, mostly for the case p(z) = 1.
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XX. Exercise. The results of XVIII und XIX extend to more general
equations of the form (1), where p(0) = 0 and r(0) = 0 are permitted. Assume
that p(z) and r(z) are continuous in J = [0,}] and positive in Jy = (0,b]. Let
R(z) = [; r(t) dt and assume that fé’ [R(t)/p(t)] dt < co. We consider the
operator Lu = (pu')’. Prove the following:

(a) The initial value problem Ly = r(z)f(z), y¥(0) =1, (py')(0) = 0 has for
f € C°(J) the unique solution

y=n+ Kf, where (K f)(z) =_/:1%s)-_/osr(t)f(t) dt ds.

(b) The corresponding nonlinear initial value problem, where f(z) is replaced
by f(z,y), has one and only one solution whenever f(z,y) is continuous in
S = J x R and satisfies a Lipschitz condition with respect to y.

(c) The existence theorem II remains true for the eigenvalue problem

Lu+M(z)u=0 in Jo, (p/)(0)=0, u(b)=0; (22)

furthermore, the estimation (12) holds and A\ > 0.
(d) The semihomogeneous boundary value problem

Lu = r(z)f(z), (pu')'(0) =0, u(b) = 0 with f € C(J)

has the solution u(z) = (K f)(z) — (K f)(b) = fob I(z, £)r(€) f(€) d€ and no other

solution. Green’s function is defined as in XIX, but with h(z) = — f: pi(t) dt.

(e) For the corresponding nonlinear boundary value problem with f(z,u) in
place of f(z), the three propositions of the existence theorem XIX remain true.

Hints. Reduce (b) to a fixed point equation y = T'y, using (a). In the space
C°(J) with the maximum norm, T is a contraction if the interval J is small.
The solution can be extended to a larger interval by solving a “normal” initial
value problem.

(c) Consider as in VII the corresponding initial value problem with »(0) = 1,
(pu')(0) = 0. The argument function ¢(z, ) of the solution u(z,)) satisfies
¢(0, ) = 7/2. The propositions VII.(a)-(d) follow as before, since p(z) > po >
0 and r(z) > ro > 0 in [e, b].

(e) The problem with # = 0 is reduced to a fixed point equation that is
similar to (21). It can be treated as before.

XXI. Eigenvalue Problems in the Sense of Carathéodory. The
eigenvalue problem (2), (3) for C-solutions can be studied under the assumption

(SLc) | 1/pg,r € L(J),p>0,7>0ae. in J,

which is significantly weaker than (SL); c¢f. 26.XXIV for the boundary value
problem. If u(z,)) is a solution of (9), then we have u,pu’ € AC(J), which
implies that the argument function ¢(z,)) belongs also to AC(J), since the
arctan function satisfies a Lipschitz condition.
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The argument function satisfies (10) and has the properties of VIL. For the
proof, Theorem 10.XXI is again crucial. Lemma V and the separation theorems
VI and VII(a) follow as before, but also VII.(d), because the function ¥(z) = kn
is a subfunction for z > zp and a superfunction for £ < zy, which means that
©(z, Ao) is < km to the left and > kw to the right of zo. In VII.(b) and (c) the
proofs require some modification. We sketch a proof of a weaker form of VIL.(c),
namely @(b, A\) — 00 as A — oo.

Let I = [o, B] C J be an (arbitrarily small) interval and let ¢p(z, \) be the
solution of (10) with ¢o(a, A) = 0 and ¢1(z, A) the solution with ¢,(8,\) = =.
‘We show that ¢g(8, M) > 7 for large values of A\. Let & < y < § < 8. According
to VII.(d), there exists € > 0 such that

¢o(z,0) > € in [7,0] and ¢;(z,0) <7 —¢ in [a,d],

and these inequalities hold also for ¢g(z,A) and ¢;1(z,\), A > 0. As long as
€ < ¢o < 7™ —¢, we have @) > (g + Ar)sin’e. Since the integral of 7 in the
interval [y, 8] is positive, there is Ag > 0 such that ¢g(z, A\g) assumes the value
7 — ¢ in [,6]. When z moves further to the right, ¢o(z, A\g) remains above
#1(z, Ao), and ¢o(B, Ao) = m follows.

The rest is simple. We take a partition zp = a < 73 < --- < 7, = b
of J with subintervals Iy = [zx_1,zk) and in each I a solution ¢r(z, Ax) of
(10) that vanishes at zx_; and is > 7 at Tx. Then Lemma V shows that the
argument function ¢(z, A*) with A* = max Ay satisfies ¢(z1,A*) > ¢1(z1, A1) 2
n and, since ¢ + 7 is also a solution of (10), @¢(z2,A*) = 7 + ¢a(z2,A2) >
27,..., (b, A*) > pm.

Now all prerequisites required for the proof of the existence theorem II in
VIII have been assembled.

XXII. Exercise. Riccati Equations. (a) If u is a nonvanishing solu-
tion of equation (5) (p(z)w')’ + g(z)u = 0, then the function r(z) = p(z)v'/u
satisfies the equation

2
4 —— 4 q(z) =0; 23
7+ 100) (23)
it is called the Riccati equation of (5). Conversely, if 7(z) is a solution of (23),
then u(z) = exp (f(r/p) dz) is a nonvanishing solution of (5).
(b) The same connection exists between the linear equation (5') v’ +g(z)u'+
g(z)u = 0 and its Riccati equation

v +72 +g(z)r +q(z) =0, (23"

where r(z) = u'/u and u(z) = exp ([ r dz).

These relations can be used to derive properties of solutions of equation (5)
from those of equation (23) and vice versa. An example is given in

(c) A blow-up problem. Let y, be the solution of the problem

y=2"+1% y(0)=c. (24)
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It exists to the right in a maximal interval [0,b,) and blows up at b,, ie.,
Ya(be) = 00, and b, is continuous and strictly decreasing in & € R with b, — 0
as @ — 0o. The case @ = 1 has been studied in 9.V.

Hints for (c). We have p(z) = 1 and ¢(z) = 22 in (5). Let v or w be the
solution of (5) with (u(0),%'(0)) = (1,0) or (0,1), resp. Then uo = v — aw is
the solution of (5) with initial values u(0) = 1,%'(0) = —¢, and ro = ul,/uq
satisfies (23), and r,(0) = —a. Hence y, = —r, is the solution of (24). The
first positive zero b, of u, has the above properties, and furthermore, b, tends
to the first positive zero ¢ of w as @ — —oo. Note that u4(c) = v(c) < 0 by
27.V1 and hence b, < c.

Remark. Strict monotonicity of b, implies that there is exactly one blow-up
solution in [0,b) for 0 < b < ¢ and no such solution for b > c.

§ 28. Compact Self-Adjoint Operators in Hilbert
Space

In this section, we first develop an eigenvalue theory for compact self-adjoint
operators in a Hilbert space. The results are then applied to the Sturm-Liouville
eigenvalue problem.

I. Inner Product. An inner product (scalar product) in a real or com-
plex linear space H is a mapping (-,-) of H x H to R or C, respectively, with
the following properties (f,g,h € H; A\, € R or C)

(Af + 1g, h) = A(.f: h) + ,LL(Q, h) linearity,
(f.9)=1g,f) symmetry,
(f,f)>0 for f#0 definiteness.

In the complex case it follows from the second property, which is called
the Hermite property, that (f, f) is always rfeal and that the inner product is
“antilinear” in the second argument:

(f, Mg + ph) = X(f,9) + B(f, h).-

In the real case, the bars are all superfluous, and the inner product is bilinear.
The following statements hold, unless otherwise noted, in both the real and
the complex case. The proofs will be given for the complex case; the arguments
are also valid in the real case.
In the linear space H with inner product, the relation

£l = V(£ f)

defines a norm. The norm properties follow from 5.I1. The definiteness is im-
mediately obvious, and the homogeneity follows from (Af,Af) = A\(f, f) =
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|A2]|lfl|2. To prove the triangle inequality, consider, for arbitrary f,g € H, the
expression -

0< (f+ g, F +Ag) = (£, ) + Mg, ) + £, 9) + M(g, 9)-

Setting A = (£, g)/llgll?, one obtains, after a simple intermediate calculation,
(F Ol <Nfl-llgll Schwarz inequality

(it follows from (g,0) = O that the inequality is valid for g = 0). Therefore,

(f+a.f+9=0N+(f,9)+(9f)+ (99

< (£ 5) + 200 - Ngll + (g, 9) = (11 + llglh?,
and the triangle inequality

If+gll <UI£1+ llgll

follows. We note two additional simple propositions that can be immediately
verified by a calculation:

If+gll2+1f —gll* = 2)I71% + 2llgll parallelogram identity,
\f+gli2 = FI2+1gll?, if (f,g)=0 Pythagorean theorem.

II. Inner Product Space and Hilbert Space. A linear space with
an inner product is called an inner product space or a pre-Hilbert space. 1t is a
normed space in which the norm is induced by the inner product; cf. I. If an
inner product space is complete as a normed space, i.e., a Banach space, then
it is called a Hilbert space. These definitions hold in both the real and complex
cases. Some examples:

(a) The space R™ with the inner product

(a,b) =a1by + -+ apbs
is a real Hilbert space. The space C™ with
(a1 b) = G'IBI R AR o an.En.

is a complex Hilbert space. In each case, the norm is the Euclidean norm.
(b) Let H be the set C(J) of the continuous real—va.lued functions f(z) on
J :a < 1 < b with the inner product

b
(f9) = / f(2)9(z) dz. 1)

In this space, the “distance” between two functions f, g is

b
If—ol=1f [-opem @)
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It is easy to see that the above inner product has the required properties. This
space is not complete and hence is not a Hilbert space. This is because there
exist sequences of functions f,, € C(J) that are Cauchy sequences in the sense of
the norm (2) but do not have a continuous function as a limit, e.g., the sequence

fa(z) = {max (z,1/n)} /3

on the interval 0 < z < 1. The limit in the sense of the norm is the function
z~1/3 which, however, does not belong to H.

In order to extend this space to make it complete, one must include functions
that are not continuous. This leads to

(c) the real Hilbert space L?(J) of measurable functions on J that are square-
integrable, which means that the integral

b
/ f%(z) dz < oo.

It follows that the integral of f also exists (as long as the interval J is bounded).
The inner product is defined as in (1). We note that measurability and integral
are understood in the sense of Lebesgue.

(d) Correspondingly, the complex-valued continuous or square-integrable
functions in J form a complex inner product space or Hilbert space, respec-
tively, if one defines as inner product

b
(f9) = / 1(2)7(@) d.

We note that our development of the Sturm-Liouville eigenvalue problem is
largely carried out without the notion of the Lebesgue integral, that is, in the
inner product space (b) of continuous functions.

(e) Exercise. Show that the inner product is a continuous function on H x H,

i.e., that f, — f, gn — g implies (fmg'n.) - (f,g)-

III. Orthonormal Systems and Fourier Series. Let H be a real or
complex inner product space. A sequence (u,)§° of elements of H is called a
(countable) orthonormal system or an orthonormal sequence if

( )= 5 1 for m=n,
Um,Un) = =
™ m 0 for m#n.
If f is an element of H, then
(=]
> ew with e = (fu) (3)

=0

is called the Fourier series generated by f, and the ¢, are called the Fourier
coefficients of f. The following results deal with questions of the convergence
of this series and its sum.
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If 5 denotes a finite sum and d; are arbitrary constants, then
(f - Zdiui:f - Zdiui) = (f,f)- Zdiéi - Zc,—cfi
+ Zdiij(ui,uj)

%)
or

Nf - Zdimllz ={fI*+ Z d; — e, — Z 2.

Thus ) d;u; is a best approximation to f if and only if d; = ¢;. In particular,
the nth partial sum s, of the Fourier series (3) satisfies

If = sall® =117 =) leal®. _ _ 4)
=0
(a) Bessel’s inequality holds,
Dl =Y I(fw)P <A for feH. (5)
i=0 =0

(b) The partial sums of the Fourier series (3) form a Cauchy sequence. Thus
if H is a Hilbert space, then the Fourier series (3) converges, i.e, its partial sums
converge in the sense of the norm to an element of H.

(c) Equality (in the sense of norm convergence)

f=) ciu

- i=0

holds if and only if equality holds in Bessel’s inequality (5). If this is true
for every f € H, then (u,) is called a complete orthonormal system or an
orthonormal basis.

Propositions (a) and (c) follow immediately from (4), since the left side of
the inequality is > 0. To prove (b), let s, be the nth partial sum of the Fourier
series (3). If m < n, we have

n

n
Isn—sml2= > eGlumy)= Y laf

i,j=m+1 i=m+1

Thus, because of the convergence of the series (5), (s5) is a Cauchy sequence.
(d) Ezample. The functions

1 1 1
U = ——=, Ugn—1 = —=SINNT, Upp = —=
0 m 2 1 \/7_1: 2 \/1_[“
form an orthonormal system in the space of Example II.(b) or II(c) with J =
[0, 27].

cosnz (n €N)
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The functions (ei"’c /V2m), n € Z, form an orthonormal system in the space
from example II.(d) with J = [0, 27]-

The proof of the following facts is recommended as an exercise.

(e) The partial sums of a series ) ;o au; form a Cauchy sequence if and
only if 372 |a;|* converges. Thus, in a Hilbert space, this condition is necessary
and sufficient for the convergence of the series.

0
(f) If the series Zaiui converges, say to f € H, then a; = (f,w;); i.e., a
i=0
convergent series is the Fourier series of the function represented by the series.
In particular,

oo )
Zaiui = Z,B,;u,; = Q; = ,3-5 for all i.

=0 i=0

IV. Bounded, Self-Adjoint, and Compact Operators. Let H be a
(real or complex) pre-Hilbert space and T' : H — H a linear operator. T is
called bounded if the norm of T, -

|T|| == sup{|ITf|| : f € H, | fll =1},
is finite. In this case,
1T < IT) - IIfll forall fe H. (6)
If T is linear and bounded and '
(Tf,9)=(fTg) for f,g€H,

then T is called self-adjoint or Hermitian.

A linear operator T is called compact if for every bounded sequence (f)
from H, the sequence (T'f,) has a convergent subsequence (with limit in H). It
is easy to see that a compact linear operator is bounded.

(a) If T is a self-adjoint operator T', then (T'f, f) is real for every f € H,
and

Il = sup{|(Tf, f)| : f € H, | fll = 1}.
Proof. Denote the right side of this equation by 3. Then clearly,

(TF, ) <BIfIP for feH. (7)
By (6) and the Schwarz inequality we have

I(Tf, O S NTFI < T for ||fI| =1, whenee B < |IT].
The proof of the reverse inequality follows from the identity
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The left side is

< BIIF + g2+ BIIf - ol> = 2B(1 712 + 6l%)

by (7) and the parallelogram identity. Using the particular choice f = Ah,
g = Th with A = ||Th||, ||h|| = 1, one then obtains

2(Tf,g) +2(Tg, ) = 2A\(Th, Th) 4+ 2X(T%h, h) = 4)3,
and hence
408 < 28(M\% 4+ )X%) = A= ||Th|| < 6.
Since h with ||h|| = 1 is arbitrary, it follows that ||T|| < B; and therefore,

“IITN = 8 a

V. Eigenvalues of Compact Self-Adjoint Operators. If the equa-
tion

Tu=pu with O#uecH (8)

holds, then p is called an eigenvalue of T and u a corresponding eigenelement.

Let T be a compact self-adjoint operator. To determine an eigenvalue, we
consider, if T # 0, a sequence (¢,) from H such that

gall =1, [(Thn,¢a)l =TIl as n— oo,
cf. IV.(a). By passing to a subsequence if necessary, we assume further that the

sequence of real numbers (T'¢n, ¢r) and the sequence (T'¢,) both converge (T
is compact!),

(T¢m ¢'n.) —pn, Ton— pu.
Here p is real and |g| = ||T'|| > 0. Now we have

0L\ Tpn — pdnll? = | Tdnll? = 2u(Tbn, ¢n) + p?
<2p? ~ 2p(Tén, n) — 0;

that is,
T¢'n. = /1'¢‘n. +en with €, € H) “511,“ —0.

Since T'¢, — pu, we have po, — pu; thus ¢, — u, and therefore T'¢,, — Tu.
It follows that equation (8) holds and ||u| = 1.
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VI. Theorem. IfT isacompact self-adjoint operator in the inner prod-
uct space H, then T has an eigenvalue po € R with |uo| = ||T)|. The corre-
sponding eigenelement ug € H with

Tup = povo, |lugl| =1

has the property that the expression |(Tu,u)| assumes its mazimum on the unit
ball at the point ug. Since (8) implies that (Tu,u) = p||u||?, every eigenvalue p
of T is real, and it satisfies |u| < ||T|.

Proof. This theorem was proved for T # 0 in V; for T =0 it is trivial. &

Consider now the subspace H; of all elements f € H that are orthogonal to
ug-

Hy = {f € H: (f,u0) = 0}.

It is easily seen that H, is a closed subspace of H. Furthermore, T' maps H,
into itself because

(Tf,u0) = (f,Tuo) = po(f,u0) =0 for feH,

and T is self-adjoint and compact in H;.
Now Theorem VI can be applied to H;. Thus there is an eigenvalue yx; and
an eigenelement u; with

I/"'OI 2 I/"'llr (uorul) =0, "ul ” =1

Now let Hz be the subspace of all elements f € H that are orthogonal to ug
and u;, etc. This procedure terminates only if the subspace H,, of elements f
with
Hy: (f,u:)=0 for i=0,1,...,n—1
is {0}. That is impossible in an infinite-dimensional space.
VII. Theorem. Let H be an infinite-dimensional inner product space

and T : H — H be linear, self-adjoint, and compact. Then the eigenvalue
problem (8) has countably many real eigenvalues o, p1, ... with

lpol = lpa| > |uz| > --+ and pn—0 as n— oo. (9)
The corresponding eigenelements u,,,
Tun = tnly,

form (with a suitable normalization) an orthonormal system,

1 for n=m,
(uma un) =
0 for n#m.
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If H,, is the space of all f € H such that
(fyu;)=0 for ¢=0,...,n—1,
then
lpal =sup||Tfl| =sup|[(Tf, )l  (f€Hn, lIfll=1) (10)

and (Tun, un) = pn; i.e., the supremum is assumed for f = u,.
Each element in the image space of T is represented by its Fourier series,
i.e., if f € H, then

Tf=> du with d; = (hu) = ps(f,m). (11)

i=0

The proof of this theorem, up to (11) and the limit relation in (9), is
contained in the previous remarks. The sequence (u,) converges to 0 because
otherwise the sequence 9, = ;%uu" would be bounded, and then the sequence

(T4n) = (u,) would possess a convergent subsequence, which is impossible,
since |{un, — um|| =2 for m # n.
Finally, in order to prove (11), we consider the function

n~1
gn=_cu, & =(fu).

i=0

Clearly, g» € H, holds; therefore, by (10), (4), and (9),
I Tgnll < lpinl - gall < ] - 151 — 0.

The conclusion now follows from the equation

n—1

Tf-) diu; = Ty,

1=0
|

Addendum. Ewvery eigenvalue p # 0 is equal to some un, and the cor-
responding eigenspace (that is the set of all w € H that satisfy (8)) has finite
dimension and is spanned by the eigenelements uy, corresponding to px = u.

Proof. If u is a solution of (8) with g # 0, then u lies in the image of T, i.e.,
we have

u=2cgui with ¢; = (u,1;), Tu=2c;uiui.

Because of (8) and IIL(f), the relation uc, = p;c; holds for all i. If u # p; for
all 4, then ¢; = 0, and hence © = 0. If p = p,,, then ¢, =0 for all 1 with u; # u
and u = Y cxuk, where the sum extends over all ¥ with px = p. | |

For T = 0, the theorem is true, but not interesting.
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VIII. Theorem. If H is a Hilbert space and u = 0 is not an eigenvalue
of T, then (u,) is an orthonormal basis; i.e., a representation

o0
f=Y cu with ¢=(fu)
=0
holds for all f € H.
The equation f =) c;u; also holds in a pre-Hilbert space if u = 0 is not an
eigenvalue and the series belongs to H.

Proof. By IIL.(b), the Fourier series of f is convergent, say to g. Thus, by
II1.(f), ¢; = (g, u;). It follows that T f and T'g have the same Fourier coefficients
p;c; and hence are equal by the conclusion (11) of the theorem. From T'(f—g) =
0 it follows that f = g, since 0 is not an eigenvalue of T'. B

We apply these results now to

IX. The Sturm-Liouville Eigenvalue Problem. We consider the
problem

Lu+Adru=0 in J=|a,b], Rju= Ryu=0, (12)
where Lu = (pu')’ + qu and

Ryju = oqu(e) + azp(e)’(a),
Ryu = Bru(b) + Bap(b)u' (b)

under assumption (SL) of 27.1. Suppose A* is not an eigenvalue and g(z) is re-
placed by ¢*(z) = g(z) + A*r(z). If (A,, un) are the eigenvalues and eigenfunc-
tions for the original problem, then those for the new problem are (A, — A*, u,,).
In particular, O is not an eigenvalue for the new problem. Therefore, we will
assume, without loss of generality, that A = 0 is not an eigenvalue.

A solution u of (12) can be interpreted as a solution of the semihomogeneous
Sturmian boundary value problem

Lu=g(z) with g(z)=-Ar(z)u(z),

Ryju = Ryu = 0. Thus, by (26.12), u satisfies the integral equation

b
u(e) = =) [ (@ Er(eule) de. (13)

Here I'(z, §) is Green’s function for the Sturmian boundary value problem (26.4),
whose existence is guaranteed by Theorem 26.VII, since A = 0 is not an eigen-
value (Lu = 0, R,u = 0 has only the trivial solution).

The relationship between the original problem and the integral equation is
clarified in the following
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X. Theorem. Let assumption (SL) from 27.1 hold, and suppose that 0
is not an eigenvalue of (12). Then A is an eigenvalue and-the function u(z) is
a corresponding eigenfunction if and only if u is continuous in J and Z 0 and
satisfies the integral equation (13).

The proof of Theorem X is contained, for the most part, in the above
discussion. Just one small hole needs to be closed. If one wants to show that a
solution u of (13) also represents a solution of (12), then one must first check that
u € C2(J), since u is only assumed to be continuous. However, this follows from
Theorem 26.VII, since the integral on the right-hand side has the form (26.12)
with g = ~Aru, and as it was proved there, this integral is twice continuously
differentiable for continuous g. [ |

We have thus transformed the original eigenvalue problem into an analogous
problem for (13). Equation (13) is called a Fredholm integral equation. (Fred-
holm integral equations are those with fixed limits of integration; those with
variable limits, such as arise with initial value problems, are called Volterra
integral equations.)

Let the operator T be defined by the relation

@@ = [ Ter©no & (14
Then from Theorem 26.VII we get the equivalence

v=Tf <> Lv+rf=0, Ryju=Ryu=0. (15)
If both sides of (13) are multiplied by 1/, then

Tu=pu with p=1/x - (16)

We now consider this equation in the real inner product space H = C(J) of
Example II.(b) and apply the earlier results. The operator T maps C(J) to
itself. From Tf = 0 we conclude, using (15), that f = 0; i.e., u = 0 is not
an eigenvalue of T. Since A = 0 is not an eigenvalue of (12), there is a one-to-
one correspondence between the eigenvalues A of (12) and p of (16) given by
A=1/p.

The discussion can be simplified if one uses a weighted inner product

b
u4»=/ruwumqu (17)

in the space C(J) instead of the inner product (f,g) of Example II.(b) (for a
first reading, the reader can take r = 1 without missing any essentials). First of
all, it follows from our general assumptions (SL) in 27.1 that there exist positive
constants «, § with

O<a<r(z)<f in J
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Thus the weighted norm

b 1/2
Il = (7, 7 = ( [ ror@ dz) (8
a
and the usual one || - || generated by the inner product (f, g) satisfy the relation
ol £l < £l < BIFll;

i.e., the two norms are equivalent; cf. 5.V or 10.III. We denote the space C(J),
equipped with the inner product (f,g)., by H,.

The operator T is linear, self-adjoint, and compact. The self-adjointness
follows from the symmetry of T,

b b
(71,9)- = - [ r(@)g(@) [ T(a,0r(©)1(€) dedo = (1, To)s.

a a

The compactness of T is contained in the following lemma.

XI. Lemma. If (f,) is a sequence in C(J) with ||fll- < C, then the
sequence

b
gn(@) =Tfn = - / Tz, £)r(€) fulE) de

satisfies the hypotheses of the Ascoli-Arzela theorem 7.IV; i.e., it is equicontin-
uous and uniformly bounded,

lgn(z)| < C1 forall z€J, neN.

Hence the sequence (g,) has a subsequence that converges uniformly in J end
therefore also in H, to a function g € C(J).

Proof. Because of the continuity of I'(z,£), for € > 0 there exists a § > 0
such that

IT(z, &) - T(z',€)| <e for |z—2z'|<é.
Therefore, if g =T f and | f||- < C, then by the Schwarz inequality,

b
l9(z) — g(z')| < / ID(z,€) - T(, )| (€) £ (€)] de

b
SE/ r|f|d€ = (1, |f|)r < Elllllr",f"r < Cve

with v = ||1||» £ Vb — a. This proves equicontinuity. The proof of bounded-
ness is even simpler. The kernel I' is continuous, hence bounded, |I'(z,£)| < A.
Thus it follows from the Schwarz inequality that

g (z)] = |T(z, ), fa)r| £ | Allr ] fullr < YAC.
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The equation T'u; = piu; (u; # 0) can be written using A\; = 1/p; as u; =
T(M\u;). By (15), the last equation is equivalent to

Lu; + Mir(z)u; =0, Ryu; = Rpu; =0 (:=0,1,2,...).

This is a new proof for part of the existence theorem 27.I1.
If we set aside for the moment the question of convergence, then an expansion
of a given function ¢(z) in terms of the eigenfunctions u; is given by

00 b
¢(z) = Zdiui (z) with d; = (¢, u:)r = /a r(z)¢(z)ui(z) dz. (19)

i=0

This matches the expansion given in Theorem 27.III.
Now let ¢ € C%(J), R1¢ = Ry¢ = 0. By (26.12),

b
8(z) = / T(z,6)(Le)(€) dE = Tf with f=—Le/r.

Therefore, Theorem VII applies, and (11) holds for ¢ = T'f, which is (19). This
equation is to be understood in the sense of convergence in the norm (18). We
will now show that in fact, the convergence is uniform in J.

By (11), d; = pic; with ¢; = (f,u;). Further, for fixed zo, the number
piu;i(zo) can be interpreted as the Fourier coefficient of the function —I'(zo, £);
that is,

piui(zo) = —(T(2o, ), i)

Consider now a partial sum from ¢ = m to ¢ = n of (19) and apply the Schwarz
inequality:

(Z Ciﬂi“i(%)) <D (miui(zo)).

i=m i=m i=m

If the second sum on the right-hand side is extended to 0 and to oo, then by
Bessel’s inequality it is < ||T'(zo,-)||2. The first sum on the right-hand side is
likewise the partial sum of a convergent series. Thus for any € > 0, there exists
an ng such that

2
n
(Z ciuiui(a;o)) < €||IT(zo, -)|I2 < Ae for n>m > ng, o € J.

i=m

This establishes the uniform convergence of (19). Since convergence holds in
H,., Theorem 27.III follows for the case where ¢ € C?(J). We note that the
theorem is also true for ¢ € C*(J). However, the proof is more difficult; cf., for
instance, Kamke (1945) or Titchmarsh (1962). | |

Our final result is a general theorem about the Fourier expansion of functions
from L2(J). The proof requires results from the theory of the Lebesgue integral.
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XII. Expansion Theorem. Every function ¢ € L*(J) can be expanded
in a series of eigenfunctions of the Sturm—-Liouville problem (12). Eguation (19)
holds in the Lo-norm of Ezample IL(b),

n 2
/b (¢(x) - Zdiui(x)) dz — 0 as n—oo.

=0

The proof will be briefly indicated. One considers T as an operator in
the real Hilbert space L?(J) with the inner product given by (17). It is easy
to show that T is self-adjoint and compact in L?(J). Consequently, Theorem
VII holds in L%(J). Now let f € L?(J) and suppose T'f = 0. If g € C?(J)
and satisfies R1g = Rzg = 0, then there is an A € C(J) such that g = Th,
hence (f,9)r = (f,Th), = (Tf,h), = 0. It follows that f = 0, i.e., 0 is not
an eigenvalue of T. Then by Theorem VII, (u;) is an orthonormal basis and
the proposed relationship holds, first for the norm || - ||, and then also for the
Ly-norm, because of the equivalence of the two norms. E

Our last theorem deals with the Fourier expansion under conditions that are
weaker than (SL) and apply to the radial A operator, among others.

XIII. Coeflicients with a Zero on the Boundary. We consider the
eigenvalue problem (27.22) for the operator Lu = (pu’)’ using the assumptions
and the notation given in 27.XX. The radial elliptic eigenvalue problem for
Au + Au is covered as a special case.

In what follows, H, is the Hilbert space of measurable functions in J = [0, b]
with a finite norm (18); the inner product is given in (17). Since r(0) = 0 is
permitted, we have only H, D Lo(J).

Theorem. The sequence (u,) of eigenfunctions of the eigenvalue problem
(27.22) is an orthonormal basis in H,; that is, each element of H, is represented
by its Fourier series in the sense of convergence in H,.

In the following sketch of the proof, T is the operator defined in (14) (a = 0),

where Green’s function is taken from 27.XX.(d) and B = fé’ p~1(z)R(z)dz <
0o.

Let f € H, and v = Tf; that is, (pv') +rf =0, (pv’)(0) = v(b) = 0. Using
the Cauchy-Schwarz inequality, it follows that

z T T b 1/2
/rfdt}:/«/?-«/?fdtiﬁ(/ rdt-/rfzdt) ,
0 0 0 0

and therefore

o' (@) < I fll- v R(z)/p(). (*)

lpv'(z)| =
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Writing VR/p in the form /R/p - 1/1/p, one obtains from ()

/Ivdt <Ilfl|r/ IR g < 151l (/ —dt- / -dt>l/2,

b

v(@)| < |l VB vIR@)], where h(z)=— / %dt,

T

lu(z)} =

which implies

and
b
Ill? < | FI2B / r|h| dz = B2| f||2

(reverse the order of integration in the last integral).

Now all necessary estimates are assembled. Let (f,) be a bounded sequence
in H,, C = sup ||f|l-, and v, = Tfn. The bounds on v(z) and v'(z) show
that the Ascoli-Arzeld theorem can be applied in intervals [e, b] with € > 0. It
follows in a familiar way that a subsequence of (v,) converges in Jp = [(0, b]
to a function v € C%(Jp) (one chooses a subsequence (v1) converging in [2,],
from that subseqence chooses a subsequence (v2) converging in [1,b , and
considers the sequence (v7)). Since r(z)vi(z) < g(z) = B02|h(z)|r(z) E L(J ),
the limit v satisfies the same inequality. Hence v € H, and |v, — v|j, — 0 as
n — oo due to the theorem on majorized convergence. This shows that the
operator T' is compact; it is also self-adjoint, and 0 is not an eigenvalue of T
because of 27.XX.(c). Now the theorem follows from Theorem VIII. [ |

Ezercise. Replace the boundary condition u(b) = 0 in (27.22) by Rou =
Bru(b) + Bzp(b)u’(b) = 0 and prove the corresponding theorem on the complete-
ness of (u,).

The eigenvalue problem takes on particular significance in connection with

certain partial differential equations that play an important role in physics.

XIV. Partial Differential Equations. (a) We begin with the parabolic
differential equation for the function ¢ = ¢(t,z),

b = ;% (p(z)9z)z +q(z)p] for a<z<b t>0, (20)

with the boundary conditions
Ri¢:=n¢(t, a) + azp(a)gs(t,a) =0,
Ro¢:=P14(t,b) + Bap(b)d=(t,b) =0
and the initial condition

#(0,z) = f(z) for a<z <D (22)

(21)
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If p = const, 7 = const, ¢ = 0, and ay = B3 = 0, these equations describe the
temperature distribution in a homogeneous rod of length b — ¢ whose initial
temperature is equal to f(z) and whose ends are held at temperature zero.

A product ansatz (or, as it is also sometimes called, a separation of variables
ansatz) ¢(t,z) = h(t)u(z) for a solution of (20) leads to

= -[(zm’)’ +qu].

If one divides here by the product hu, then the functions to the left of the equal
sign depend only on ¢ and those on the right only on z. This equation can be
valid (after dividing by hu) only if the left- and right-hand sides are constant.
We call this constant —X and obtain the equations

W+A=0 for h=h(t),

(pu’) +qu+Aru=0 for u=u(z).
If in addition, we require that ¢(¢, z) = h(t)u(z) satisfy the boundary conditions
(21), then we must have Rju = Ryu = 0. Thus we obtain the eigenvalue problem

(12) for u. If A, is an eigenvalue and u, the corresponding eigenfunction, then
the product

bn(t,T) = e tu, ()

is a solution of (20) that satisfies the boundary conditions (21). The same also
holds for a linear combination of the ¢, and—assuming appropriate convergence
behavior—for the infinite series

(¢, ) =icn¢n(t z) che Antun(z). (23)

n=0 n=0
The initial condition (22) then leads to the equation

o0

¢(01 13) = f(x) = z c'nun(x)1

n=0

which is just the Fourier series for f with respect to the orthogonal system (u,).
‘We summarize:

The solution to the initial-boundary value problem (20)-(22) is obtained
(at first formally) as an infinite series of the form (23), where the coefficients
¢, are the Fourier coefficients of the function f with respect to the orthonormal
system of eigenfunctions (un) to the eigenvalue problem (12).

(b) An Ezample. In the case of the heat equation

Pt =g for 0<z<m t>0
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with the boundary conditions ¢(¢,0) = ¢(¢,7) = 0 and the initial condition (22),
the procedure described above leads to A, = n?, u, = \/2/nsinnt (n € N) and
hence to the solution

o0 s
¢(t,z) =a Z cne ™ tsinnz with ¢, = a/ f(z) sinnz dz,
0

n=1

where o = /2/7.
A number of conclusions about the behavior of the solution can be obtained
from this representation, for example, the estimate

—2t

H(t,z) < aZZci . Ze‘z"z‘ < a2/ f2(z) dzx - =
n n 0

1—e—2t’
Here we have made use of Cauchy’s inequality and Bessel’s inequality. Thus
|p(t, z)| < Ce~t. However, if / f(z)sinz dz = 0, then it follows that |$(t, z)| <
0

C - e~ (Proof?).
This is not the place to deal with the questions of the convergence of the series

(23) and the existence of ¢, ... . Instead, we will consider another example,
(c) The hyperbolic differential equation

b= 75 (P@e)s +ale)d] Tor a<z<b >0

with the boundary condition (21) and initial condition

#(0,z) = f(z) and ¢(0,z) =g(x) for a<z <h (24)
The product ansatz ¢(¢,z) = h(t)u(z) now leads to the &quation

R" + M =0 for h=nh(t)

and the eigenvalue problem (12) for u(z). Corresponding to each eigenvalue A,
there are two solutions

én = un(T)c0s v Ant, Pn = Un(z)siny/A,t, provided that A, =0.
A corresponding series ansatz has the form

$(t,z) =Y cndn + Y dntbn,

n=0 n=0

which, together with the initial conditions (24), leads to the relations

f@) =Y catn(@), 9(=) =YV Indnun(z).

n=0 n=0
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Ezercise. Determine the formulas for ¢,, d,,, and ¢ for the equation of the
vibrating string

=0z for O<z<mt>0
with boundary conditions of the first kind: ¢(¢,0) = ¢(t, 7) = 0.

(d) As an example of a partial differential equation in several “space vari-
ables,” we consider the heat equation

¢t=A¢ for ¢=¢(t1£)=¢(t15111€n)

with A¢ = Pe e, + depe, + -+ + Pee.,- Suppose that rotationally symmetric
initial values are prescribed in the unit ball,

$(0,€) = f(l€le) for 0< gl <1,
and that the boundary values are given by

ot €)=0 for |€le=1, t>0.
According to 6.XIV,

Au(lgl) = w' + "2 = @Y,z = [
The ansatz ¢(t, €) = h(t)u(z) leads to the equation A’ + Ah = 0 for h(t) and the
equation

(2™ ) + Az™ lu =0 for u(z).
As boundary conditions one has /(0) = 0 and u(1) = 0; c¢f. Lemma 6.XIV.
Thus we are led to the eigenvalue problem (27.18) with a = n — 1, for which

the existence of eigenvalues was treated in 27.XVIII and the expansion theorem
was proved in XIII. One obtains the solution in the form

$(t,€) = cne tun(z) with f(z) =)  catn(z) and z = |¢le.

n=0 n=0

In the case n = 2, which corresponds to o = 1, the differential equation in
(27.17) is Bessel’s equation of order 0. The solution y is the Bessel Function
Jo(z). Its zeros 0 < & < €1 < --- lead to the positive eigenvalues A\, = ¢2 and
the corresponding eigenfunctions

un(z) = anJo(énz), n=20,1,2,....
The normalization factor o, is obtained from the relation

1
|| 278 de = GNP = 0 = VE/Ii (60,

given without proof. From the expansion

oo 1
flz)= Z cnondo(énz) with ¢, = an/ zf(z)Jo(€nz) dz,

n=0 0
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one obtains the solution of the boundary value problem

¢(ta£) = chane—g’z‘tjo(gnz) with z = ‘e‘e-

n=0

(e) Ezercise. In example (b) the boundary conditions are changed to

¢$(t10) = ¢z(t,7r) =0.

Physically, this means that the ends of the rod are thermally insulated; i.e.,
there is no heat flux from the ends. Solve the boundary value problem.






Chapter VII
Stability and Asymptotlc
Behavior

§ 29. Stability

I. Stability Theory. We resume the problems treated in §12. In con-
trast to the case investigated there, we now consider solutions defined on infinite
intervals. In this setting, continuous dependence on initial conditions and on the
right side of the differential equation is a significantly more complicated matter
than in §12, where general results were obtained under restricted assumptions.
Even in the simplest examples, new phenomena emerge when the interval is
infinite.

Two Ezamples. Let y(t) be the solution of

y=y y0)=n -
and z(t) be a solution with the initial value z(0) = n +¢&. Then
2(t) — y(t) = e,
i.e., the difference between two solutions to the same differential equation with
different initial conditions tends to oo like €.
On the other hand, if ¥ and z are two solutions of the differential equation
y=-Y
with initial values n and 7 + €, then the difference is given by
2(t) - y(t) = ee™,
and hence converges to 0 as t — co.
Our goal in the present section is to give criteria that guarantee that solutions
depend continuously on initial conditions in the sense that if the difference
z(0) — y(0) is small, then the function z(t) — y(t) also remains small in the

whole interval ¢ > 0. Statements of this kind fall under the heading of “stability
theory” for ordinary differential equations.

305
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II. Stability, Asymptotic Stability. In the following, ¢ is a real vari-
able; the functions f, x, y can have values in either R™ or C”.
Let x(t) be a solution of the system

y' =f(t,y) 1)

for 0 < t < co. We assume that f(¢,y) is defined and continuous at least in
Sa 10 <t < oo, |y —x(t)] < a(a>0). The solution x(t) is said to be stable
(in the sense of Lyapunov) if the following statement is true:

For every € > 0, there exists § > 0 such that every solution y(t) with

ly(0) —x(0)| < &
exists for all t > 0 and satisfies the inequality
ly(t) —x(t) <e for 0<t<oo0.

A solution x(t) is called asymptotically stable if it is stable and if there exists
B > 0 such that every solution y(t) with |y(0) — x(0)| < 3 satisfies

Jim [y(e) = x(2)| = 0.

A solution x(t) is called unstable if it is not stable.

More generally, one can consider a fundamental interval [a,c0) and replace
y(0) — x(0) by y(a) —x(a) and 0 <t < o0 by e <t < oo. This raises now
a question: Are the stability definitions for the interval [0,00) equivalent to
the corresponding definitions for [a,00)? If one assumes additionally that f is
locally Lipschitz continuous in y, then the answer to this question is positive.
The proof will be given in the next section; it can be omitted in a first reading.

Remarks. The norm |-| in these definitions is an arbitrary norm in R™ or C™.
Using Theorem 10.111, it is easy to show that the definitions are independent of
the choice of norm.

It is customary in stability theory to formulate the theorems for the case
t — +o0; results for ¢ — —oo can be reduced to this case.

III. The Poincaré Map. The solution to equation (1) with the initial
value y(t) = n will be denoted by y(¢;7,n) (uniqueness of solutions to initial
value problems is assumed). Let t = a and t = b be two fixed points. The
Poincaré map P associates an initial value at the point a with the value of the
corresponding solution at the point b; in terms of formulas,

n— Pn=y(ba,n) Poincaré map. (2)

From the uniqueness assumption, it follows that P is injective. We will
assume in the following that f has values in R™; the extension to C" is straight-
forward. Let f be defined on a set D that is open in the strip S = [a, ] x R,
i.e., is the intersection of an open set with S.
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Theorem. Let f : D — R™ be continuous and locally Lipschitz continuous
with respect to y. Let the set M of all solutions of (1) that exist in all of
the interval [a,b] be nonempty. Then the sets M, = {y(a) : y € M} and
M, = {y(b) : y € M} are open, and the Poincaré map P : M, — M, is a
homeomorphism (i.e., P is bijective, P and P~ are continuous).

Proof. Let J = [a,b] and z(t) € M. Asin 13.X, we first determine an o > 0
with So = {(t,y) : t € J, |y —2(t)| < a} C D and extend f to the set J x R"
while preserving the values in S,, say, by setting

£(t,y) = £(t,2() + (v — 2(£))A(ly — 2(£)])

with A(s) =1 for 0 < s < a and h(s) = a/s for s > a. For any (¢,y) € J x R”,
the argument of f appearing in the above formula belongs to S,, ie., f* is
defined in all of J x R™, Further, f = f* in S,, and f* is Lipschitz continuous
with respect to y in J x R™.

Applying Theorem 13.II with k = f*, A = 7, g(z,)) = n, a()) = a leads
to the conclusion that the solution y*(¢;a,7) of (1) depends continuously on
(t;@,m). In particular, there exists § > 0 such that if | — z(a)| < §, then
|y*(t;a,n) — 2(t)| < @ in J. Therefore, if  is in this range, then y*(t;a,n) =
y(t;a,n) € M and Py = y(b;e,n) is continuous. Since z(t) € M is arbitrary,
it follows that M, is open and P is continuous in M,. The continuity of P~?!
and the openness of M, follow in a corresponding manner. u

The question raised in II is now easily answered

Corollary. Let the function f satisfy the assumptions for (1) and be locally
Lipschitz continuous with respect toy. A solution x(t) defined in [0, 00) is stable
relative to t = 0 if and only if it is stable relative to an arbitrary point t = b,
b>0.

Corresponding statements hold with respect to asymptotic stability and in-
stability.

Proof. Suppose x(t) is stable relative to t = b. Then for any € > 0, there
exists a neighborhood U of x(b) such that if y(b) € U, then |y(t) — x(t)] < ¢
for t > b. We apply the theorem with 2 = 0. Since the set M is not empty
(x(t) belongs to M), it follows that V = U N M, is a neighborhood of x(b)
and W := P~}(V) is a neighborhood of x(0). Making W smaller as needed,
one obtains that the inequality |y(t) —x(t)| < € holds in [0, 5] (Theorem 13.II).
However, because P(W) C U, the inequality holds in the whole interval [0, 00);
i.e., x(t) is stable relative to t = 0. The proof of the converse is simpler and will
be left to the reader. a

IV. Linear Systems. In the (real or complex) linear system

y' = A(t)y + b(t) (3)
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let A(t) and b(t) be continuous in the interval J = [0,00). Then every solution
exists in J (Theorem 14.VI). Let X () be the fundamental system for the ho-
mogeneous equation with the initial value X (0) = I. We begin by clarifying the
relation between the current definition of stability and the one given earlier.

(a) The definition of stability for the zero solution of the homogeneous equa-
tion given in 17.X1 agrees with the definition given in IL.

Proof. If the zero solution is stable in the sence of 17.XI, then there exists
a K > 0 with |X(t)| < K in J. If y is an arbitrary solution, then the estimate
ly(t)] < K|y (0)]| follows from the representation y(t) = X (¢)y(0); hence |y(t)| <
e in J if |y(0)| < 6 := ¢/K. Therefore, the zero solution is stable according to
Definition II. The converse i5 proved in a similar manner. The proofs for the
two remaining cases are left to the reader. |

Theorem. If the zero solution of the homogeneous equation y’ = A(t)y is
stable, then every solution of the nonhomogeneous equation (3) is also stable. A
corresponding theorem holds for asymptotic stability and instebility.

Since the definition of stability deals with the difference z(t) = y(t) — x(t)
of two solutions to (3) and since this difference is a solution to the corresponding
homogeneous equation, the conclusion follows at once. a

Thus when dealing with stability questions for linear systems, it is sufficient
to study the stability of the zero solution of the homogeneous equation.

Because of its importance, we reformulate the result obtained in 17.XI for
the equation with constant coefficients:

y' = Ay (A a real or complex n X n matrix). (4)

Stability Theorem. Let v = max{ReA : X € 0(A)}. The stability of the
trivial solution x(t) = O of (4) is determined as follows:
v < 0= x(t) is asymptotically stable;
v > 0 = x(t) is unstable; and
v = 0= x(t) is not asymptotically stable, and is stable if and only
if m'(A) = m()\) for all eigenvalues A with ReX = 0 (see
17.VIIL).

This determines the stability behavior for linear systems with constant co-
efficients completely. The following result gives a bound on X () = e/t

V. Theorem. If the eigenvalues )\; of the constant (real or complez)
matric A satisfy the inequality

Rel); < «, (5)
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then
|eAt| <ce® for t>0 (6)

Jor some positive constant c.

The proof follows from the fact that by 17.VIII, the differential equation
(4) has n linearly independent solutions of the form

y(t) = eXp(t), (M)

where ) is an eigenvalue of A and p(t) = (p1(t),...,P(t))T is a polynomial of
degree < n.
If  — Re A = ¢ > 0 here, then certainly |p;(t)| < c;et holds, and hence

leMps(t)] < ele+Rent ¢; = c;e®t.

If Y(t) denotes the fundamental system consisting of n solutions of the form
(7), then each of the n? components of Y can be estimated by an expression of
the form const - e**. The same estimate also holds then for Y (¢), and since e4¢
is likewise a principal system and can be represented in the form e = Y (¢)C,
it holds for e4? as well. ]

A norm generated by a scalar product (cf. 28.I) will be called a Hilbert norm.
In the following we show that there exists a Hilbert norm in C" such that (6)
holds with ¢ = 1 and, in addition, that a corresponding lower estimate holds;
such a result has useful applications. The expression (-,-) denotes the classical
scalar product, | - | denotes the Euclidean norm; cf. 28.1I(a). The conclusions
hold for real 4 in R™.

Corollary. Let the eigenvalues of the matriz A satisfy

B<Rel <a. (8"
Then there ezists a Hilbert norm || - || in C" such that the estimates
e|lc|| < [lete|| < e*|ic|| for t>0,ceC” (6")

hold. From here one obtains that
et < |le?t] <e*t for t>0,

where ||e?t|| is the operator norm of et corresponding to || - ||.
Proof. We assume first that |Re ;] < 6 and consider the scalar product
o0
(c,d) := / e~ Wltl(eAtc eftd)dt  (c,d e CM).
—o00

Let € > 0 be chosen such that |[Re);] < § —e. Then it follows from (6) that
|(e4tc, e4td)| < |e?t|?|c||d| < const - €26~ for t > 0; therefore, the integral
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over [0, 00) is convergent. The integral over (—oo, 0] can be transformed into an
integral over [0, 0o) using the change of variables t = —t, where A is replaced by
—A. This integral is likewise convergent, since the eigenvalues of —A satisfy the
same estimates. Therefore, the scalar product is well-defined, and the properties
28.1 are satisfied. Let ||c|| := \/{c,c). If one chooses ¢ = d = e“®a, then

00 00
”eAsaHZ =/ e—26[t|leA(s+t)a|2dt=/ e"26|‘_’||e’4ta|2dt.
)

-
For s > 0, we have |t]| — s < |t — s| < |t| + s, and hence

e~ 265¢=261t] < o=2Blt—s| < 265o—26t]
It follows, taking into account the definition of ||aj|, that

e??||a]” < [le?*al® < e¥*|la]® for s>0. (*)

We now consider the general case and set v = (a+ f0)/2, 6 = a—7 =
v — B. The eigenvalues p; of the matrix A’ = A — I can be obtained from
the eigenvalues A; of the matrix A by setting y; = A; — ; in particular, they
are < 6 in magnitude. We define the above scalar product with A’ in place of
A. Taking square roots and using the relation e4's = e~75e*, we obtain an
estimate corresponding to (x):

e™%la|| < [le**a|| = 7™ [le**a|| < e’*|la| for s>0.
Since v — 6 = 8 and <y + § = «, the inequalities (6') are proved.

We now turn to nonlinear problems. An important tool for this study is

VI. Gronwall’'s Lemma (1918). Let the real function ¢(t) be contin-
wous in J:0<t < a, and let

¢
é(t) < a+ﬂ/ o(r)dr inJ with B> 0.
0
Then

#(t) < aeft in J.

Proof. Denote the right side of the inequality in the assumption by (t).
Then 9’ = B¢, and since ¢ < 9, we have

%' <Py, or equivalently, (e Pi9p(t))’ <O0.
Hence e~P3)(t) is decreasing, which implies
e (1) < 9(0) = o

and we obtain ¢(t) < 9(t) < ceP, as was claimed. |
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The following two theorems constitute classical results of stability theory.
They have to do with a differential equation with “linear principal part,”

y/ = AY+g(t1y)1 (8)

which means that g(t,y) is small relative to y for small y. Under this assump-
tion, which will be made precise in (9), stability properties of the linear equation
(4) carry over to the nonlinear equation (8).

VII. Stability Theorem. Let the function g(t,z) be defined and con-
tinuous for t > 0, |z| < & (@ > 0), and let

- )| uniformly for 0 <t < oo; ©)
lzl~0 2|

thus, in particular, g(t,0) = 0. Let A be a constant matriz, and suppose
Re )‘i <0
for all eigenvalues A\; of A.

Then the zero solution x(t) = 0 of the nonlinear equation (8) is asymptoti-
cally stable. '

Proof. The assumptions together with Theorem III imply that there exist
two constants ¢ > 0 and 8 > 0 such that Re \; < —( and

le®t| <c-eP* for t>0.

Moreover, by (9), there exists a §, 0 < § < @, such that
g2 < Djal for lal <8 e20 (10)
The theorem is proved if we can show that
ly(0)| e < 2% implies |y(t)| < cee /2 for ¢ > 0. : (%)
We know from 18.VI that every solution of the nonhomogeneous equation
y' = Ay +b(t)
can be represented in the form

t
y(t) = etyo + / e*t=)b(s)ds, where o :=y(0).
0

Now, if y(t) is a solution of (8), then accordingly, it satisfies the integral equation

t
y(t) = ety +/0 et=9g(s,y(s)) ds.
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Using (10), the inequality

t
Y0 < yoloe™ + [ 09 y(o)ds (1)

follows, at least as long as (10) can be applied, i.e., as long as |y| < §. Now let
y(t) be a solution of (8) with |yo| < € and ¢(t) = |y(¢)]|e?t. From (11) it follows
(as long as |y| < 6) that

t
#0) e+ [ 9(s)as
0
and therefore by Gronwall’s lemma,
$(t) < cee®2, or |y(t)| < cee™PH? < %5. (12)

This inequality implies that |y(t)| cannot take on the value § for any positive
t and hence that the inequality (12), and consequently (*) holds for all ¢ > 0.
Note that y(t) can be extended to the boundary of the domain of g, hence
because of (12) to the whole interval 0 <t < co. |

VIIL. Instability Theorem. Assume that g(t,z) satisfies the assump-
tions of Theorem VII. Further, let A be a constant matriz and suppose
ReA>0

for at least one eigenvalue A of A. Then the solution x(t) = 0 of the nonlinear
differential equation (8) is unstable.

Proof. We first transform the differential equation (8), using a linear trans-
formation, into a form that is better suited for our purposes. Let Ay, ..., Ap be
the zeros of the characteristic polynomial of A (counting multiplicities). Let A
be transformed into the Jordan normal form B by the matrix C:

B=C1AC = (b)
with
bii = A, bizy1 =0o0rl, b; =0 otherwise.
Further, let H be the diagonal matrix
H =diag(n,7%,...,7") (n>0).
It is easy to check that H~! = diag(n~%,772,...,7~") and that
D =H'BH & di; = bnf %,
ie.,

di; = A, di,i+1 =0orn, dij =0 otherwise. (13)
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If we now set y(t) = CHz(t), then the differential equation transforms into

7z =H'C 'y = H'C™'{ACHz +g(t,CHz)},
or

z' = Dz +1(t,2) (14)
with

f(t,z) = H"1C'g(t,CHz) and D= H 'C'ACH.

If g satisfies assumption (9), then so does f, since from |g| < ¢|z] for |z| < 6 it
follows that

|f(t,z)| < |H™'C™?|-|CHlelz| for |z| < 6/|CH).
Instead of (14) one can also write
z§ = )\izi{+nzi+1}+fi(t, Z) ('i= 1,...,77.). (14’)

The term in braces appears only if the index i corresponds to a Jordan block
with more than one row and does not correspond to the last row in this Jordan
block. '

We denote by j or k those indices for which

ReA; >0 or Rel; <0, respectively,

and by ¢, ¥ the real-valued functions

$) =Y lu®F,  ¥t) = zk: |2 (2)I?,
J

where z(t) is a solution of (14’). Now let n > 0 be chosen so small that

0<6n<Rel; forallj,
and choose 6 > 0 so small that

|£(t,2)|e < izl for |zl <6.
If z(t) is a solution of (14') with

lz(0le <6, %(0) < ¢(0), (15)
then as long as |z(t)|e < 6 and ¥(t) < ¢(t), we have

¢’ =23 ;Rez}z; (16)

=23;(Re Az Z{ + nRez;j11%;} + Re Z;5(t, 2)),

and further, by the Schwarz inequality (j + 1 is an index of type j),

| XRe 241%;| < Ylzizir1l < o/ 2121222512 = ¢
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and

| SRez; 5] < 4/ TlzPEIS2 < VI,

as well as Re ) A;z;2; > 6n¢ and
I£le < nlzle = 1V +¥ < 201/,

Hence
1
5¢’ > 6n¢ — nd — 2n¢ = 3n¢.

An equation analogous to (16) bolds for 9 (t) (one simply replaces j by k). Thus,
because Re A <0, it follows, using the same estimates, that

1
51#’ <mp + 2n¢.

Therefore, as long as 9¥(t) < ¢(t), we have

26 ~¥) > 3nd — (b + 21) = (6 —¥) 20,

i.e., the difference ¢ — 9 is increasing as long as it is positive. This shows that
as long as |z(t)| < 6, the inequalities ¢(t) < ¢(t) and ¢' > 6n¢ are satisfied, and
hence ¢(t) > $(0)e®™ (Lemma 9.1); i.e., for every solution z(t) satisfying (15)
there exists a o with |z(Zp)| = 6. But this signifies that the solution x(¢) = 0 is
not stable. B

IX. Autonomous Systems. Linearization. Autonomous systems are
systems of the form

y' =1£(y). (17)

The right-hand side of such equations does not depend explicitly on ¢; conse-
quently, if y(£) is a solution, then so is y(t+1%p). Other properties of autonomous
systems were already discussed in 10.XI.

Let us assume that f € C!(D), where D C R™ is neighborhood of 0, and
that O is a critical point of £, i.e., £(0) = 0. The equation y' = Ay, where A is
now the Jacobian f/(0), is called the linearized equation at the point 0, and the
transition from the nonlinear equation (17) to the linear equation y’ = f'(0)y
is denoted as linearization. If equation (17) is written in the form

y' = Ay +g(y), (18)
then

gly) =f(y) - f'(0)y,
and bence

im 8% _ g
y—0 [yl
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by the definition of differentiability. This shows that the function g(y) satisfies
the main assumption (9) of the two preceding theorems.

By the stability theorem VII, the “equilibrium state” x = 0 of the nonlinear
equation (17) is asymptotically stable if the same is true of the linearized equation
(4). By Theorem VIII, it is certainly unstable if ReA > 0 holds for some
eigenvalue of A.

‘We have already seen several types of unstable linear systems in the case
n = 2 with completely different phase portraits, for instance, the saddle point
and unstable nodes and vortex points. This raises the question whether the
structural similarity between the linear system (4) and the “perturbed” equa-
tion (18) (with g(y) = o(|y|)) reaches still deeper and also includes the phase
portraits. The answer is sometimes, but not always, positive; it requires a new
notion.

The origin is called a hyperbolic critical point of f if £(0) = 0 and the
Jacobian matrix A = f/(0) has only eigenvalues with Re A # 0. For such points
D. Grobman (1959) and Ph. Hartman (1963) proved the following

Linearization Theorem. (Grobman—Hartman). Let D be a neighbor-
hood of the origin and £ € C*(D). If the point O is a hyperbolic critical point
of £, then there exist neighborhoods U, V of the origin and a homeomorphism
h: U — V (a bijection that is continuous in both directions) that transforms
the trajectories of the linear equation (4) (as long as they belong to U) into
trajectories of the nonlinear equation (17), preserving the sense of direction.

(a) The above conclusions carry immediately over to the case where another
point a, instead of 0, is a critical point of f. This is because the difference
z(t) = y(t) —a, which is the concern of stability questions, satisfies the equation
z’ = h(z) with h(z) = f(a + z) whenever y is a solution of (17). Here we have
h(0) = f(a) = 0 and A = h/(0) = f(a). The critical point a is called hyperbolic
whenever Re X # 0 for A € o(A). In the linearization theorem, which remains
valid, V is now a neighborhood of a.

Ezamples. 1. The real linear systems for n = 2 with det A # 0 discussed
in 17.X have the origin as-the only critical point. It is hyperbolic in all cases
with one exception, the center (in 17.X.(d), it is denoted by K(0,w)).

2. The equation of the mathematical pendulum

z\’ y
v +sinu =0+ = ‘
y —sinz

has critical points (0, 0) and (m, 0). Corresponding linearizations are

01 01
T L R ()

For the first of these, the linear part is the equation for the harmonic oscillator
u” + u = 0. The trajectories are circles around the origin, and the phase
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portrait of the mathematical pendulum shows closed, approximately circular
Jordan curves near (0,0). The linearization theorem, however, does not lead to
any conclusion in this case (Re A = 0), and for good reason. The differential
equation

v’ + vl +sinu=0

has the same linearization at the origin. Nevertheless, this equation is asymp-
totically stable at the origin (this follows from 30.X.(e)), while the harmonic
oscillator has a center there.

By contrast, in the second case det(A — AI) = A2 — 1, whence A = %1, and
one has a saddle point. By the linearization theorem the phase portrait of the
mathematical pendulum likewise has a saddle point structure in a neighborhood
of the point (7,0). Compare the corresponding pictures in 11.X.(d) and 17.X.(c).

3. Let n =1 and consider the equation

¥ =ay+pPy® (a,BER).

The linearized equation is ¥’ = ay. The following table describes the stability
behavior of the solution y = 0:

linearized equation nonlinear equation

a <0 asymptotically stable | asymptotically stable
a >0 unstable unstable

asymptotically stable if <0
a=0 stable stable if =0
unstable if >0

The conclusions for o # 0 follow from VII and VIII; the proof for the case
o = 0 is suggested as an exercise. The point y = 0 is hyperbolic for a # 0 only;
for o: = 0 the nonlinear equation changes its behavior with 3.

Linearization is an excellent tool for the study of nonlinear autonomous
systems in a neighborhood of its critical points. This viewpoint gives the classi-
fication of plane linear systems a deeper significance. However, the connection
disappears if the linear system has eigenvalues with vanishing real part.

Proofs of the linearization theorem are found in the books by Amann (1983)
and Hartman (1964); they are not simple. The books by Jordan and Smith
(1988) and Drazin (1992) are well suited for obtaining a deeper understanding
.of the global behavior of nonlinear systems. More advanced are the treatises of
Hale-Kogak (1991) and Wiggins (1988).
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X. The Generalized Lemma of Gronwall. Let the real-valued func-
tion ¢(t) be continuous in J = [0,a], and let

s(t) <a+ /0 he)b(s)ds i J,

where @ € R and h(t) is nonnegative and continuous (sufficient: Lebesgue inte-
grable) in J. Then

t
#(t) < ae®®)  with H(t) = / h(s)ds.
0
The proof from VI carries over (Exercise!).
XI. Exercise. (a) In the (real or complex) system of differential equa-
tions
y' = Ay +g(ty)

let A be a constant matrix and Re A < a for every eigenvalue A of A. Further,
let g(t,y) be continuous for t > 0, y € R™ or C*, and

lg(t, ¥)] < Alt)lyl,

where h(t) is a continuous (sufficient: locally integrable) function for ¢t > 0.
Show that every solution y(t) satisfies an estimate

y(®)] < Ky @550 with  H(r) = /th(sws
. 0

for some constant K > 0 that is independent of y.

Hint. Derive an integral equation for ¢(t) = e~**|y(t)| and use the general-
ized lemma of Gronwall.

From (a) conclude the following:

(b) If h(t) is integrable over 0 < t < oo and if all eigenvalues of A have
negative real part, then the solution y = O is asymptotically stable and all
solutions tend to zero as t — oo.

(c) In the linear system

Y =(A+B®)y,
let B(t) be a continuous matrix for ¢ > 0, and let

/m |B(t)) dt < oo.
0

If all eigenvalues of A have negative real part, then the solution y = 0 is
asymptotically stable.
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XII. Exercise. Let n =3,y = (z,¥,2), and

'=—z—y+z+r(z,y,2)z,
¥ =z —2y+2z+ 72z, 9, 2)y,
2=z +2y+z+r3(z,y,2)2,

where 7;(z, ¥, 2) is continuous and 7;(0,0,0) = 0 (i = 1,2,3). Show that the
zero solution is unstable.

§ 30. The Method of Lyapunov

The Russian mathematician and engineer A.M. Lyapunov (1857-1918) in-
troduced in his dissertation of 1892 two methods for dealing with stability ques-
tions. While the first method is of a special nature, his second, or direct, method
has developed into an extraordinarily useful tool. The method is based on a
real-valued Lyepunov function V, which can be viewed as a generalized distance
from the origin.

We consider real autonomous systems

yl = f(y)a (1)

where f is continuous in the open set D C R", 0 € D, and £(0) = 0. The zero
solution x(t) = 0 of (1) is also called the rest state or equilibrium state. Our
theorems deal with this case. The extension to an equilibrium state x(t) = a in
the case where f(a) = 0 is elementary; cf. 29.IX.(a).

Notation. The functions, vectors, and matrices that appear have (unless
otherwise noted) real-valued components. The expressions (x,y), |x|, and B,
denote respectively the scalar product, the Euclidean norm and the open ball
|x| < r in R™. In many results in this section it is assumed that f is locally
Lipschitz continuous in D. When this is the case, the solution y(t) of (1) with
initial condition y(0) = n is uniquely determined and will be denoted by y(¢; n).

Expositions of the Lyapunov method are found in the books cited at the end
of 29.IX and in the monographs by Cesari (1971) and Hahn (1967).

I. Lyepunov Functions. We first introduce an additional concept of
stability. The equilibrium state is said to be ezponentially stable if there exist
positive constants B3, v, ¢ such that for every solution y(t) of (1)

ly(0)] < B implies |y(t)| < ce™ for &> 0;

in particular, it is required that these solutions exist in [0, 00).

(a) If £ is locally Lipschitz continuous, then exponential stability implies
asymptotic stability.
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Proof. For every € > 0 there exists an a > 0 such that ce™®" < e. Thus if
|n| < B, then |y(t;n)] < ee™"¢=®) in [a,00). By Theorem 13.I1, there exists a
positive § < B such that |n| < § implies that |y(t;n)| < € in [0, a]. Therefore,
the last inequality holds in {0, 0o) if || < 4, i.e., the equilibrium state is stable
and, in fact, is asymptotically stable. a

Given a real-valued function V € C(D), we define
V= (grad V(x), £(x)) = fi(x) - Vi, (36) + - + fa(x) - Ve, (). (2)

It is easy to recognize that V is the directional derivative of V in the (not
normalized) direction of f:

V() = lim § [V 6o+ () ~ V). )

Because of the following property, V is also called the derivative of V along
trajectories.

(b) If y(t) is a solution to (1), then, by the chain rule and (1),

LV(y(E) = V()

This formula can be used to obtain information about the behavior of V
along a trajectory without prior knowledge of the solution. In the “direct
method”, this idea is exploited. A Lyapunov function for (1) is a function
V € C(D) that satisfies the relations

V(@©)=0, V(x)>0 for x#0 and V(x)<0 in D.

II. Stability Theorem (Lyapunov). Letf € C(D) with £(0) =0 and
let there ezist a Lyapunov function V for £. Then

(a) V <0 in D = the zero solution of (1) is stable.

(b) V <0 in D\ {0} => the zero solution of (1) is asymptotically stable.

(c) V < —aV and V(x) > bx|? in D (@, 8,b > 0) = the zero solution is
ezponentially stable. '

Proof. (a) Let € > 0 be chosen so small that the closed bail B, lies in D.
We choose a positive 7 such that V(x) > v holds for |x| = ¢, and then choose
a 8 with 0 < § < € such that V(x) < v for |x| < 4. If y is a solution of (1) with
ly(0)| < &, then by L(b), the derivative of the function ¢(t) = V(y(t)) satisfies
#'(t) <0, and hence we have ¢(t) < ¢(0) < 7. Since V(x) only takes on values
> v on the sphere |x| = ¢, it follows that |y(t)| remains < ¢ for ¢ > 0. Both
the existence of the solution in the whole interval J = [0, 00) and the estimate
ly(t)] <€ in J follow from here.

(b) If y(t) is a solution as defined in (2) and ¢(t) = V(y(t)), then tllxgo o) =
B < . We first show that 8 = 0. Let us assume that this is not the case. Then
the set M = {x € B, : B < V(x) < 7} is a compact subset of B, \ {0} and



320 VII Stability and Asymptotic Behavior

max{V(x) : x € M} = —a < 0. Since the solution y stays in M, we would have
¢'(t) < —a, which leads to a contradiction. Thus lim ¢(t) = 0.

The limit relation y(t) — 0 (¢t — oo) follows from here. For a positive ¢’ < ¢,
the function V has a positive minimum § on the set &’ < |x| < e. Therefore,
ly(t)] < €’ as soon as ¢(t) < 6, i.e., for all large ¢.

(c) The hypotheses imply that bly(t)|? < V(y(t)) = ¢(t) and ¢' < —a¢, and
hence ¢(t) < ¢(0)e~*. It follows that |y(t)| < ce™* with v = a/f > 0. |

III. Instability Theorem (Lyapunov). Suppose that V € C(D),
V(0) = 0, and V(xx) > 0 for some sequence (xx) in D\ {0} with x; — O.
IfV>0forx#0 orV > AV inD with A > 0, then the zero solution is
unstable. In particular, it is unstable if V(x) > 0 and V(x) > 0 for x # 0.

Proof. Let y be a solution of (1) with y(0) = x; # 0; it follows that ¢(0) =
a > 0, where once again ¢(t) = V(y(t)). We consider the first case and choose
€ > 0 such that V < @ in B,. Since ¢’ > 0, and hence o = ¢(0) < #(t), we have
ly(t)| > e. Now let B, be a closed ball contained in D (r > ¢). If e < |x| < r,
then V(x) > 8> 0, and hence ¢' > 8 and ¢(t) > o + fBt, as long as y(t) € B,.
Since V is bounded in B;, the solution y(t) must leave the ball B; in finite time.

In the second case we have ¢/(t) > A¢(t), whence it follows that ¢(t) > ce*t.
Here, too, y(t) > r for large t. Therefore, because x; — 0, there exist solutions
with arbitrarily small initial values that leave the ball B,. R

IV. Examples. There is no general recipe for constructing Lyapunov
functions. In specific cases one may rely on experience and examples; some
imagination is also helpful. For many problems, the scalar product V(x) =
(x,x) = |x|* works. More generally, we consider an arbitrary scalar product
(x,y) in R" and compute the derivative V associated with the function V(x) =
(x,x) using (2'):

V(x +tf(x)) - V(x) = 2¢(x, £(x)) + > (£(x), £(x)).
After dividing by t, one obtains, as t — 0,

(2) V(x) = (x,x) satisfies V(x) = 2(x, f(x)) and V(x) > 0 for x # 0.
(b) In the differential equation

y' = Ay + ¢(y) By + g(y),

assume that ¢ : D - Rand g : D — R" with g(0) = 0 are continuous and
B = —BT is a skew-symmetric matrix. Then it follows from the result in (a)
that the derivative of V(x) = (x,x) = |x|? is given by

V(%) = 2(x, Ax) +2(x, g(x))-

By the skew-symmetry of B, we have (x, Bx) = 0; therefore, the term (y)By
in the differential equation has absolutely no effect on V. We consider three
cases.

(i) If (x,Ax) < 0 and (x,g(x)) <0 in D, then the rest state is stable.
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Now suppose g(x) = o(|x|) as x — 0. Then the rest state is
(ii) exponentially stable if (x, Ax) < —c|x|? with & > 0,
(iif) unstable if (x, Ax) > c|x|? with o > 0 holds.

Proposition (i) follows from Theorem II.(a). To prove (ii) and (iii), let 7 > 0
be determined such that B, C D and |g(x)| < ic|x| in B,. It follows that
I(x,g(x))| < 2e|x|?, and hence V < —aor V> aV in B,. Then (ii) follows
from Theorem II.(c) and (iii) from Theorem III, applied on B;,. |

(c) Linear Systems. Consider the linear system y’ = Ay and suppose Re A <
0 for all A € 0(A). We use the scalar product

o0
(x,y) = /0 (eAtx, etty) dt

(the convergence of the integral is proved as in 29.V). If V(x) = (x,x) and
y(t) = eftx, y'(t) = Aex, then

V(x) = 2(x, Ax) = / " a(y(t),y'(d) dt = [y ()P = —|xP.

By Theorem II.(b), the zero solution is asymptotically stable, something we
have known all along (17.X1). However, the approach used here gives additional
information.

(d) “Lightning proof” of the Stability Theorem 29.VII in the Autonomous
Case. If Re A < 0 holds for A € (A) and if g(x) = o(|x|) as x — 0, then the
zero solution of the equation

y' =4y +g(y)
is exponentially stable.
Proof. The function V introduced in (c) satisfies (with ||x|| = /(x,x))
V(x) < ~|x|? +2{x, g(x)) < ~xI + 2l|x|||g(x)]-

There exists ¢ > 0 such that ||x|| < ¢|x|; cf. Lemma 10.111. Let r > 0 be such
that B, ¢ D and |g(x)| < (1/(4¢?))|x| in B,. Then

V(x) < ~xl? + 22ellg00)| < —5fx S 55V (x) in By,
The concl.usion now follows from Theorem II.(c). |
(e) Nonlinear Oscillations without Friction. For the equation
W+ hu) =01 =y, =-h(z)

with zh(z) > 0 for = # 0, studied in 11.X, an obvious choice for a Lyapunov
function is the energy function

E(z,y) = %yz + H(z) with H(z)= /ox h(s)ds.
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Here E(z,y) > 0 for (z,y) # (0,0) and E(z,y) = 0. Therefore, the zero solution
is stable.

(f) Nonlinear Oscillations with Friction. We consider an equation with a
linear friction term eu’ (¢ > 0)

v tew +h(u)=0&2' =y, y =—h(z) —ey.

As a Lyapunov function we take again the energy function E(z,y) from (e); it
has now the derivative

E= ey’

Thus the energy decreases, as might be expected. By Theorem II.(a), the rest
state is stable. On physical grounds, one would guess that it is, in fact, asymp-
totically stable. This, however, does not follow from Theorem IL(b), since the
inequality V' < 0 is violated when ¥ = 0. In the next section we will derive a
more general stability theorem that implies, among other things, the asymptotic
stability in this example.

V. Limit Points and Limit Sets. Invariant Sets. In the autonomous
differential equation

y =£(y) (1)

let f be locally Lipschitz continuous on the open set D ¢ R™. The solution
y(t) with y(0) = € D will be denoted by y(¢;77). This solution exists in a
maximal interval J = (¢~,¢*) with —oo < £~ < 0 < t* < 0o and generates an
orbit v = y(J). The sets 7+ = y([0,¢+)) and v~ = y((t~,0]) are called the
positive semiorbit and negative semiorbit, respectively. A point a € R” is called
a positive limit point or w-limit point if t+ = co and if there exists a sequence
(tx) tending to oo such that limy(tx) = a. The set Lt of all w-limit points
is called the w-limit set. Correspondingly, an a-limit point a is defined by the

conditions {~ = —oo, lim#; = —oo, and limy(f;) = a, and the ¢-limit set L~
as the set of all a-limit points. In order to emphasize the dependence on the
initial value y(0) = 7, one writes t*(n), v+ (), L*(7n), .... For aset A C D,

L*(A) denotes the union of the sets L*(a) for a € A. Since z(t) = y(t+1%o)isa
solution whenever y(t) is, and since both solutions clearly have the same limit
sets, it follows that L*(n) = L*(y(n)) and L~(n) = L~ (y(n)).

A set M C D is called positively invariant or negatively invariant or invariant
with respect to the differential equation (1) if n € M implies that v*(n) c M
or v (1) € M or v(n) C M, respectively. The following simple propositions
will be stated for positive invariance; corresponding statements also hold for
negative invariance and invariance.

(a) If y(t) is a periodic solution, then v =+ =~ = L*(y) = L~ (v).

(b) Any union of positively invariant sets is positively invariant. Thus every
subset of D contains a largest positively invariant subset (it could be empty).
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(c) If y(t) is a solution with maximal interval of existence J and if 0, s,s+% €
J, then

y(s+1t) =y(ty(s))

(d) Every positive semiorbit is positively invariant, every orbit is invariant.

(e) Let y be a solution in (¢~,00) with t~ < 0. Then y* N L* # 0 implies
vt c Lt

(f) If M C D is positively invariant, then so is | J{y*(n) : 7 € M}.

The reader is invited to provide the details of the proofs as initiation into
the new concepts. The statement (c) says simply that z(t) := y(t + s) is the
unique solution with 2(0) = y(s). In (e), let a be a point in the intersection; then
on the one hand, a = y(7) with 7 > 0; on the other hand, a = lim y(¢;), where
lim#; = oco. Thus for arbitrary s > —r, the limit y(s + t&) = y(s;¥(tk)) —
y(s;a) = y(s + 7) holds because of the continuous dependence of the solution
on initial values. |

In the following, dist (x,A) = inf{|x — a| : a € A} is the distance between
a point and a set, and dist (4, B) = inf{|la—b| : a € A,b € B} is the distance
between two sets. The next theorem is crucial for later considerations.

Theorem. Let y(t) be a solution of (1) in a mazimal interval J with0 € J.
If vt C K, where K is a compact subset of D, then t* = oo and the limit set
Lt c K is nonempty, compact, connected, and (two-sided) invariant, and

lim dist (y(t),L") =0.
t—o0
In particular, all solutions y(t;n) withn € Lt ezist in R.

Proof. Since y(t) lies in K on its maximal interval of existence to the right,
it follows that the solution exists for all £ > 0. Therefore, by the Bolzano—
Weierstrass theorem, every sequence of the form (y(tc)) has a convergent sub-
sequence, so LT is a nonempty subset of K.

L* is closed. 'To show: If b is an accumulation point of L*, then for arbitrary
e > 0 and T > 0 there exists a ¢t > T such that |y(t) ~ b| < &. To prove this,
one takes a point a € Lt with |a — b| < €/2 and a t = t; > T such that
ly(t) — a| < £/2; then it follows that |y(t) — b| < e.

L+t is connected. Suppose that Lt is not connected, i.e., that there ex-
ist nonempty, disjoint, compact sets K; and K, with Lt = K; U K, and
dist (K1, Ks) = 2p > 0. Let di(t) := dist(y(t), K:), i = 1,2. For each k
(=1,2,...) there exist points t,t2 > k such that

di(tt) <p and do(t3) < p.

Since d; (t) + da(t) = 2p and since these two functions are continuous, there is a
point #x, lying between t1 and ¢Z, such that

d (tk) =p and dg(tk) 2 p.
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The sequence (y(t)) lies in the compact set K, and it has an accumulation point
a in K. On the other hand, dist (a, K;) > p, i = 1,2, which is a contradiction.

Invariance. Let a € Lt and limy(¢;) = a, where ¢, — o0o. The solution
y(t; a) exists in a maximal interval J;. We fix t € J; and choose a compact
interval I C J; containing 0 and ¢. According to Theorem 13.X, the solution
with initial value y(tx) exists at least in I for k large. Now (c) implies

y(t+t) =yt y(te)) = y(t;a) e LY as k — oo.

Therefore, since t € J; is arbitrary, y(a) C L* C K, and consequently, L*
is invariant. PFurthermore, since K is a compact subset of D, it follows that
Ji=R

The limit relation. Let € > 0 be chosen so small that the e-neighborhood
L} of Lt is contained in D. If a sequence (t;) exists such that tx — oo and
y(tx) & LT, then the sequence (y(tx)) has an accumulation point outside of L*.
With this contradiction, the final assertion dist (y(t); L*) — 0 is also proved. B

VI. Attractor and Domain of Attraction. Again f is assumed to be
locally Lipschitz continuous in D. If £(0) = 0 and if the equilibrium solution
x(t) = 0 is asymptotically stable, then the set of all € D with the property
that y(¢;m) — 0 as t — oo is a neighborhood of the origin. This set is called the
domain of attraction of 0 and is denoted by A(0). More generally, if M C D is
a positively invariant set, we define the domain of attraction A{M) of M to be
the set of all points n € D such that dist (y(¢;7), M) — 0 as t — oo. If A(M)
is a neighborhood of M (superset of an e-neighborhood), then M is called an
attractor. If D = R™ and A(M) = R", then M is called a global attractor. In
particular, a singleton M = {a} with f(a) = O is an attractor if the solution
x(t) = a is asymptotically stable.

Lemma. Let G C D be open, V € C(G), and V <0 in G. Suppose that
the set G, = {x € G : V(x) < a} is compact for some a € V(G). Then the
following hold:

(a) Every solution y(t;n) with n € G, exists for all t > 0.

(b) G4 is positively invariant.

(c) If n € Gq, then L*(n) C G, is nonempty and V =0 on L*(n).

Proof. We write y(t) for y(t;n) and ¢(t) = V(y(t)). If n € G,, then
#(0) < a. As long as y(t) remains in G, the inequality ¢’(t) < 0 holds; hence
¢(t) < a, or, what amounts to the same thing, y(t) € G,. Since the distance
from G, to the boundary of G is positive, one arrives at a familiar conclusion,
namely, that the solution exists for all ¢ > 0 and remains in G,. This proves
(a) and (b).

By Theorem V, L*(n) =: Lt is nonempty and contained in G,. Assume that
V(a) < 0forsomea € Lt. Then V(x) < —y < 0 holds in a ball B : |x—a| < 2¢.
There exists a sequence (I, ) tending to oo such that |y(¢x)—a| < € and a number
¢ > 0, independent of k, such that |y(t) —a| < 2e fort € J, = (tx — ¢, tx +¢)
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and k = 1,2,3,... (this follows from the boundedness of |y’(¢)| in [0, 0)). Thus
in every interval Ji, ¢’ < —v, and therefore ¢(t) - —oo0 as ¢ — oo. This
contradiction shows that V(a) = 0. |

Determining, or at least estimating, the domain of attraction is a problem
of great practical importance. The following theorem shows how Lyapunov
functions can be used in this context.

VII. Theorem. LetG C D be open. Let the function V € C1(G) satisfy
V <0 in G and have the property that for every a € V(G), the set G = {x €
G : V(x) < a} is compact. Let M be the largest invariant subset of the set
N :={x€ G:V(x)=0}. Then G is contained in the domain of attraction of
M; i.e., forn € G, dist (y(t;n), M) tends to 0 as t — o0.

The essential steps in the proof have already been dealt with in the lemma.
A point € G belongs to G, for @ = V(n). By V1.(c), L* = L*(n) C N,
and by Theorem V, L is invariant. Hence L* C M and, again by Theorem V,
0 < dist (y(¢;m), M) < dist (y(¢;m),L*) = 0 as t — oo. |

With this we have tools needed to derive sharper theorems on asymptotic
stability and instability. The main idea of the stability theorem goes back to
LaSalle (1968). The instability theorem was proved by Cetaev with the stronger
assumption V' > 0 in (b) as early as 1934 and later generalized by Krasovsky.

VIII. Stability Theorem (LaSalle). Let the function £ with £(0) =0
be locally Lipschitz continuous in D, and let V € C*(D) be a Lyapunov function
for £. If M = {0} is the largest invariant subset of N = {x € D : V(x) = 0},
then the rest state is asymptotically stable.

Proof. Let B, ¢ D and V(x) > v > 0 for |x| = r (r > 0). Then the set
G = {x € B, : V(x) < ~} satisfies the hypotheses of the previous theorem, and
this theorem gives the conclusion. a

IX. Instability Theorem (Cetaev-Krasovsky). Letf satisfy the hy-
potheses of Theorem VIII and let G be an open subset of D with 0 € 8G. Let
the function V € CY(G) N C(G) satisfy the conditions

() V>0inG,V=00n0GND;

(b) V>0inG.

If the empty set is the only invariant subset of the set N = {x € G : V(x) = 0},
then the equilibrium state is unstable.

Proof. We choose r > 0 such that B, lies in D. Let 1 be an arbitrary
point from G N B, and y(t) := y(¢; ). We will derive a contradiction from the
assumption that y(t) remains in B, for all £ > 0. To do this, let ¢(t) = V(y(¢)),
#(0) =V(m) =a>0,and Go = {x € GNB, : V(x) > c}. Since V vanishes on
8GN B,, G, is a compact subset of G. As long as y(t) remains in G, ¢'(t) > 0,
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which implies that ¢(t) > o and hence y(t) € G,. From here it follows in the
usual way that y(t) € G, for all £ > 0. Thus the trajectory v+ (%) is contained
in the compact set G, and Lt = L*(n) is nonempty and invariant by Theorem
V. It follows that ¢(t) is also bounded. One shows exactly as in Lemma VI that
the assumptions n € LY, V(n) > 0 imply the relation lim¢(t) = co. Thus
we have V() = 0 and hence L* C N. Since L* is invariant, this gives a
contradiction. It shows that each solution that begins in G leaves the ball By;
since 0 € 8G, the conclusion follows. E

‘We now apply these two theorems to a class of second order equations, which
describe nonlinear oscillations with friction. The case of frictionless oscillations
was discussed in detail in 11.X.

X. Nonlinear Oscillations with Friction. We consider a differential
equation

2’ +7(z,2') =0 (3)

for z = z(t). The corresponding autonomous system for (z,z’') = (z,y) is g'iven.
by

x, =Y y, = —7'(.'3, y)' ‘ (3’)

We assume that € C!(D), where D is open and (0,0) € D, r(0,0) = 0, and
r(z,0) # 0 for £ # 0. This condition means that f(z,y) = (y, —r(z,y)) has no
critical points besides the origin. As a Lyapunov function we choose

V(zy)= 39° + R() with R(z)= /0 " r(s,0) ds. @)

In the frictionless case, where r = r(z), this is precisely the energy function
from 11.X. One obtains, using the mean value theorem,

V(z,y) = —ylr(z,y) - r(z,0)] = ~y?ry(z,0y) with 0<f<1.  (5)

The following propositions deal with the stability of the equilibrium state
z(t) =0.

(a) zr(z,0) > 0 for  # 0, ry(z,y) > 0 => the equilibrium state is stable.

(b) zr(z,0) > 0 for x # 0, ry(z,y) > 0 for zy # 0 = the equilibrium state
is asymptotically stable.

(c) ry(z,y) < 0 for Ty # 0 = the equilibrium state is unstable.

Proof. If zr(z,0) > 0, then it follows that R(z) > 0 (z # 0); hence 0 =
V(0,0) < V(z,y) for (z,y) # 0. Therefore, in case (a), V < 0, and the stability
theorem II.(a) applies.

In case (b), V< 0in D\ N, N = {(z,y) € D :2zy =0}. Let § #0
and 77 # 0. The solution with initial value (£,0) satisfies y'(0) = —r(§,0) # 0,
and the solution with initial value (0,7) satisfies '(0) # 0. Therefore, these
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solutions do not remain in the set N; ie., M = {0} is the largest invariant
subset of N. Case (b) now follows from Theorem VIII.

In case (c), there are four cases to be distinguished depending on whether
r(z,0) is positive or negative for £ > 0 or z < 0. Suppose, for instance, that
7(z,0) < 0 for z > 0 and = < 0, which implies that R(z) < 0 for £ > 0 and
R(z) > 0 for z < 0. In this case, the set G consists of all points (z,y) € D
with z < 0 and those points with z > 0 for which |y| > /2|R(z)|. On the set
G we have V > 0; on the two curves y = £/2|R(z)|, z > 0, which belong to
the boundary, V = 0; finally, V > 0 in G, except for the set N = {(z,y) € G :
zy = 0}, where V vanishes. Every solution that starts on N leaves N, as we
have seen in case (b) above, i.e., N does not contain an invariant subset. The
conclusion now follows from Theorem IX.:

In the case where zr(z,0) > 0 for z # 0, one can choose G = G \ {(0, 0)}
The two remaining cases are left to the reader as an exercise.

(d) Propositions (a) through (c) remain valid if the continuous differentia-
bility condition for r is replaced with local Lipschitz continuity. The hypotheses
on 7, must then be replaced by corresponding monotonicity conditions, for in-
stance, ry, < 0 by “r is strongly monotone decreasing in y.” It is easy to see that
even less is sufficient, namely a corresponding sign condition for the difference
r(z,y) — r(z,0). Incidentally, in the rubber-band example 11.X.(c) the force
term r does not belong to C?.

(e) The Liénard Equation

z" + g(z)z’ + h(z) =0

describes an oscillation, where g(z)z’ represents a friction term that is linear in
the velocity and h(z) describes a restoring force. We will assume that g and h
are locally Lipschitz continuous. In addition, it will be assumed that g(z) > 0
(the friction force acts opposite to the velocity vector).

Here r(z,y) = ggc:c)y + h(z), and since 7(z,0) = h(z), R(z) in (4) is the

function H(z) = / h(s)ds introduced in 11.X and V is the corresponding

0
energy function E. The derivative of this function along trajectories is given by
V(z,y) = —g(z)y?. Since ry = g(z), (a), (b), (c) lead to the following

Theorem. Suppose zh(z) > 0 for = # 0. Then the equilibrium state of
the Liénard equation is stable if g(z) > 0, asymptotically stable if g(z) > 0 for
z # 0, and unstable if g(z) < 0 for z # 0.

To study the behavior of solutions as ¢ — —co, one introduces the function
z(t) = z(—t). It satisfies the differential equation 2" — g(z)z’ + h(z) = 0, that
is, the original differential equation with —g(z) in place of g(z). The stability
properties can then be read off from the theorem.

(f) The

Van der Pol Equation  z”" =¢(1 -2z’ —z
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is a special case of the Liénard equation. If € > 0, the zero solution is un-
stable, for ¢ < 0 (this corresponds to € > 0 in the direction ¢ — —o0), it is
asymptotically stable.
Exercises. (g) Global Attractor. In the Liénard equation, let g and h be
locally Lipschitz continuous. Let zh(z) > 0 and g(z) > 0 for = # 0 and suppose
T

H(z) = / h(s) ds tends to 0o as £ — +o0o0. Show: The zero solution is a global
0

attractor.
(b) Nonlinear Friction Force. Extend the theorem in (e) and the conclusion
(g) concerning the Liénard equation to the case of the differential equation

" +g(z)¥(z') + h(z) =0,

where ¥(y) with ¥(0) = 0 is locally Lipschitz continuous and strongly monotone
increasing. An important example is the quadratic resistance law ¥(y) = y’sgny
that is used to describe air resistance in high-velocity motion.

(i) Domain of Attraction. Let g and h be locally Lipschitz continuous in
J = (a,b) with a < 0 < b, and letz.'z:h(:z:) > 0 and g(z) > 0 in J \ {0}. Denote

the limiting values of H(z) = / h(s)ds as £ — a and £ — b by H(a) and

0
H(b), respectively. Show that in the case of the Liénard equation and, more
generally, the equation considered in (h), the set

G ={(z,y) € J xR: 14* + H(z) < min(H(a), H(b))}

is contained in the domain of attraction of the attractor M = {(0,0)}.

(j) Sharpen the result of the Theorem in (e) by showing: If zh(z) > 0 for z #
0 and g(z) = 0, then the zero solution of the Liénard equation is asymptotically
stable if and only if there exists a null sequence (z) with g(zx) > 0.

Remarks. The Dutch physicist and radio engineer Balthasar van der Pol
(1889-1959) came upon equation (f) in 1926 in describing an electrical circuit
with a triode valve. Soon thereafter, A. Liénard investigated the general equa-
tion of type (e). The results about the more general equation (3) go back to W.
Leighton. Numerous additional results about individual differential equations
of second order, in particular, results dealing with the occurrence of periodic
solutions, are described in the book by Reissig-Sansone-Conti (1963).

XI. Additional Examples and Remarks. (a) Gradient Systems. This
is the name given to systems in which f has a potential function g € C*(D) such
that f(y) = —grad g(y) (the minus sign is used in physics). For the equation

y' = —gradg(y) (6)

a natural choice of a Lyapunov function is the function V'(x) = g(x). We have
then

V = ~|grad g(x)[".
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Thus, if g has a local minimum at the point a € D and if there exists a neigh-
borhood N of a such that g(x) > g(a) and gradg(x) # 0 in N \ {a}, then the
equilibrium state x(t) = a is asymptotically stable. This follows from Theorem
I1.(b).

The following example is important from both a theoretical and a historical
standpoint.

(b) Motion in a Conservative Force Field. Let a conservative force field k
be defined on an open set D; C R", i.e., let there exist a potential U ¢ C1(D;)
with k(x) = —grad U(x). The equation of motion x” = k(x) then reads

x' = —gradU(x) & x' =y, y' = —gradU(x). )

Thus we are dealing with a system of 2n equations in the set D = D; xR™ ¢ R*™.
As a Lyapunov function, we take the energy function

Vey) = UG) + 5lyP

(the sum of the potential and kinetic energy). A simple calculation shows that
V(x,y) = 0. Therefore, V is constant along trajectories of solutions; this is the
theorem of conservation of energy.

The equation grad V(x,y) = (grad U(x),y) = (0, 0) is satisfied if and only
if grad U(x) = 0 and y = 0. From this observation we obtain the following:

(b;) Let gradU(a) = O, where a € D;. If the potential U has a strong
minimum at a, then the constant solution x(f) = a, that is, the solution
(x(¢),y(t)) = (a,0), is stable. This follows again from Theorem II. Inciden-
tally, the scalar equation z” + h(z) = 0 with U(z) = H(z) is a special case.

(c) Motion in a Force Field with Friction. As a rule, the frictional force has
the direction of —x/. We allow a general term of the form —y(x,x’)Ax’ with
(Ay,y) > aly|? (a > 0) and nonnegative 1; this implies that the angle between
—x’ and the frictional force is smaller that /2. The resulting equation has the
form

x" + Y(x,x")Ax’ + gradU(x) = 0.
We use the energy function V from (b) and obtain

V(x, Y) = _¢(x1 y)(AY1 y) S —a"tb(xy y)|y|2

(c1) Let ¥ and o, with (Ay,y) > aly|?, be positive and let U have a strong
minimum at 0. Then the equilibrium state x(t) = 0 is asymptotically stable.

This result follows from Theorem VIII using a setup that is similar to the
one-dimensional case in X.(b).

(d) Hamiltonian Systems. Let the real-valued function H(x,y), x,y € R",
belong to C2(D), where D C R*" is open. An autonomous system of 2n differ-
ential equations of the form

x' = Hy(x,¥), y = —Hy(x,y) ®)

is called a Hamiltonian system, and the function H is called a Hamiltonian
function. The Hamiltonian function can be used as a Lyapunov function; indeed,
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V = H satisfies V = 0 in D, as one easily sees. It follows then from Theorem
II that

(dy) A strong minimum of the Hamiltonian function is a stable equilibrium
state for equation (8).

A Hamiltonian system for n = 1 was already treated in 3.V. The potential
function F is a Hamiltonian function for the differential equation (3.13). Also,
the equation of motion treated in (b) is of type (8), where the total energy
function is the Hamiltonian function.

As an outlook on more recent developments, we consider a three-dimensional
autonomous system that despite its simplicity, exhibits exceptionally rich and
complicated dynamics. The equations were proposed by the meteorologist and
mathematician E. N. Lorenz as a very crude model of a convective (predomi-
nantly vertical) flow realized by a fluid that is warmed from below and cooled
from above. The example has attracted great attention, and its stimulating
effect persists in the recent research on chaotic motion.

XII. The Lorenz Equations. These equations read
z'=0o(y - z),
Yy =rz—y-—zz, 9
Z' =xy — bz,

where ¢, 7, and b are positive constants.

We formulate some properties of the solutions to thJs system as exercises,
with hints for the proof.

(a) Symmetry. If (z(t),y(t), 2(t)) is a solution, then so is (—z(t), —y(t), 2(t)).

(b) The positive and negative z-axes are invariant sets.

(c) The origin is a critical point for all parameter values. If 0 < r < 1, the
origin is a global attractor and the zero solution is asymptotically stable.

(d) If r > 1, then the zero solution is unstable.

(e) Every solution has a maximal interval of existence of the form J =
(t~,00). There exists a compact, positively invariant set E C R? (depending
on o, r, b) that every solution enters at some time and thereafter never again
leaves.

Hints for the proofs. (c) Use the Lyapunov function V(z,y, 2) = 2% + oy® +
02 and show that the hypotheses of Theorem IL(b) and Theorem VII with
G =R3 are satisfied.

(d) Calculate the matrix A of the linearized system and show that A has
three real eigenvalues, two negative and one positive

(e) Consider the Lyapunov function V = rz? + oy? + o (2 — 2r)?, calculate
the derivative V, and show that the set A = {(z,y,2) € R® : V(z,y,2) > —6}
is compact (§ > 0). Let M be the maximum of V on A and let E be the set
of all points with V(z,y,2) < K (E is an ellipsoid with center (0,0,2r)). If
v(t) = (z(t),y(t), 2(t)) is a solution and ¢(t) = V(v(t)), then show that (%)
#(t) > K implies ¢'(t) < —6, and derive the conclusion from (x).
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These properties lie on the surface. Anyone interested in digging deeper
can consult the book The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors by C. Sparrow (Springer Verlag 1982).






Appendix

In this appendix, concepts and theorems from topology, real, and complex
analysis and functional analysis that are used in the text are formulated. In
most cases the theorems are given with proofs or at least with sketches of the
proofs. At some points the theory is deepened.

A. Topology

In this section we present some basic facts about paths and curves for use
in the investigation of differential equations. We begin with some definitions
and elementary results, followed by a discussion of the polar-coordinate repre-
sentation of curves that is needed for the Priifer transformation in § 27.IV. We
then introduce the winding number and give a statement of the Jordan curve
theorem without proof. Next, theorems on level curves that are used to check
for the existence of periodic solutions are presented. The section concludes with
some theorems on autonomous systems of differential equations for n = 2 that
in essence spell out that a solution that starts on a level curve traces it out
entirely. The proofs for these theorems are independent of the previous results.

There is no consensus in the textbook literature about the concept of a curve.
In some branches of mathematics the emphasis is on the curve as a set—a one-
dimensional manifold; in others (particularly in mechanics) it is important to
know how the curve is traced out, which is accomplished by introducing a time
dependent path function. Both aspects come forward here.

I. Paths and Curves. A continuous function ¢ : I = [a,b] — R” is
called a path in R™, and the image set C = ¢(I) is called a curve with the
parametric representation ¢; we will also use the notation ¢|; when we wish to
call attention to the interval I. The point ¢(a) is called the initial point of the
path, the point ¢(b) the terminal point. The path ¢ is called a Jordan path if
the mapping ¢ is injective, and a closed Jordan path if ¢(a) = ¢(b) and ¢ is
injective on [a,b). If ¢ € C*(I) and ¢'(t) # 0, then ¢ is called a smooth path.

The same terminology is used for the curve generated by ¢. Thus, for in-
stance, the set C C R" is called a closed Jordan curve if there exists a closed
Jordan path ¢|r with ¢(I) =C.

333
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(a) Smooth Closed Paths and Curves. Of a smooth closed path we demand
that besides being smooth and closed, it satisfy (i) ¢'(a) = A¢'(b) with A > 0.
The relation (i) is equivalent to the condition that the curve ¢(I) have a tangent
at the point ¢(a) = ¢(b) (there is a peak at ¢(a) if (i) holds with A < 0). If
(i) holds, then there is a change of parameter of the form ¢;(t) = ¢(h(t)) with
h(I) = I such that ¢; satisfies (i) with A = 1 and generates the same curve C
(for example, one can take A(t) = a + a(t — a) + B(t — a)? with o = 2/(1 + X),
B = (1 —a)/(b—a)). This ¢; can be extended as a periodic C*-function of
period p = b —a to all of R, and each of the closed paths ¢1][c,c4+p) (¢ arbitrary)
generate the same curve C. In particular, any point of C' can be taken as the
initial point.

(b) Splicing Paths. Paths can be joined together: If ¢|; and 9|; are paths
with I = [a,b] and J = [b, c] and if ¢(b) = 1(b), then we denote by w = ¢ D 9
the path in the interval I U J defined by w|; = ¢, w|s = 9. This construction
can also be carried out when J does not connect to I. For example, if J = [a, ]
and, of course, the relation ¢(b) = 1¥(a) holds, then one introduces a change of
parameter in 9 (¢’ = ¢ + b — ) and then proceeds as above.

(c) Reversing Orientation. From the path ¢|; one obtains, by reversing the
orientation, the path ¢~|;, defined by ¢~ (t) = ¢(a + b —t). The path is traced
out in the reverse direction with initial and terminal points exchanged. However,
¢ and ¢~ generate the same curve.

More results concerning paths and curves, including the definition of the
path length L, the formula

b
L=/ #(@)]dt for ¢ € CHI),

and the corresponding formula for the arclength, can be found in standard
analysis textbooks.

II. Connectedness. An open set G C R" is called connected (or, more
exactly, path-connected) if every pair of points from G can be connected by a
path in G, that is, given z,y € G, there exists ¢|; with ¢(a) = z, ¢(b) =y, and
¢(I) C G. A nonempty open connected set will be called a domain. We note
that in topological spaces a different definition of connectedness is used; the two
notions are equivalent for open sets in R™.

Now let G be an arbitrary nonempty open set and z,y € G. If z and y can
be connected in G, then we write = ~ y. This relation is an equivalence relation,
and the corresponding equivalence classes are pairwise disjoint open connected
subsets of G whose union is G. These subsets are called components of G. The
set G is a domain if it has only one component, namely G. It is easy to prove

(a) If G, H are domains with GN H # @, then GU H is also a domain.

III. Plane Curves. Polar Coordinate Representation. A point
(z,y) in the plane can be represented as a complex number z = (z,y), also
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written as z = £ +iy. In the second notation, z stands for (z,0) and i for (0, 1),
and the definition of multiplication in C leads to iy = (0,y). The function

e' = (cost,sint) = cost +isint

is 2m-periodic, and |e}*| = 1.
Every point z # 0 has a polar coordinate representation

z =rel?,

here 1 = |z| = /2% + y? is the modulus of z. The argument ¢ = argz is
uniquely determined up to a multiple of 27. For z, 2’ # 0, we have the relations

a.rg% = —argz, argzz —argz+argz (mod 2m). (1)

Using the principal value of the arc functions, the relations

arctan(y/z) for >0 [+ forz <0,
argz = . (2)

arccot (z/y) for y>0 [+nfory<0]

determine one value of the argument. All other values are obtained from here
adding 2k7 (k an integer). The principal value of the argument is denoted by
Arg z; it is defined by the inequalities —7 < Argz < 7.

The following results apply to paths in the plane {(t) = (£(t),n(t)) : I — R2.
We first show that such a path has a polar coordinate representation

¢(t) = r(t)ei“’(‘) (with continuous argument function ¢(t)). (3)

This result requires a simple fact that follows from the intermediate value the-
orem.

(a) Suppose that for a function f € C(I) there ezists a § > 0 such that at
each point t € I, either f(t) =0 or |f(t)] > 6. Then if f vanishes at a point of
I, f)=0in 1.

Theorem. A path (|1 with {(t) # 0 has a representation (3) with an argu-
ment function ¢ that is continuous in I. This representation is unigue modulo
27; i.e., every other continuous argument function is of the form ¢(t) + 2km,
where k is an integer.

If ¢ € C*(I), then the functions 7(t) = |¢(t)| and ¢(t) are also in C*(I).

Proof. Let ¢(t) = (£(t),n(t)) € C¥(I) (k > 0). Suppose, to consider a
specific case, that at ¢ = 7, () > 0. Then in a neighborhood J. of 7 one
obtains an argument function in C*(J,) by setting #(t) := arctann(t)/£(t).
Proceeding in a similar manner at each point ¢ € I and using the appropriate
choice of the two possibilities given in (2), one obtains a corresponding interval
neighborhood J; and a function ¢ = arg{ € C*¥(J;). By the Borel covering
theorem, finitely many of these interval neighborhoods, say Ji, ..., Jp, are
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a cover for I. Let these neighborhoods be numbered such that J; = [e,t1),
ty € J2 = (s2,12), t2 € J3 = (83,13), ..., tp—1 € Jp = (5p,]], and let ¢; be
the argument function that corresponds to J;. We begin the construction of an
argument function ¢ € C*(I) by setting ¢(t) := ¢;(¢) in J;. Then a point ¢ in
J1 N Jy is chosen, and one determines an m such that ¢1(t) = ¢2(t) + 2mn. By
(a), ¢1 = ¢2-+2mm holds in J1 NJ,, and hence the definition ¢(t) := ¢o(t) +2mmn
in J, gives a function in C*(J, U J;). Proceeding in this manner one eventually
obtains ¢ = arg¢ € Ck(I).

The uniqueness of ¢ modulo 27 follows immediately from (a). |

Corollary. Let (| and (*|; be two paths that do not contain the origin
and suppose Re (¢*(t)/¢(t)) > 0. If the argument function ¢(t) = arg((t) is
continuous, then

¢*(t)
¢@®

defines a continuous argument function ¢*(t) = arg *(t). -

¢*(t) := é(t) + Arg

By (1) ¢* = arg(*, and since Re (¢*/¢) > 0, the arctan formula applies in
all of I. Hence ¢* is continuous. [ |

IV. The Winding Number. Let I = [a,b] and {|; be a closed path
that does not pass through the origin. Making use of the (continuous) polar

coordinate representation ((t) = r(t)el*®), we define the wmdlng number of ¢
(with respect to 0) by

U(z) = 2%{¢(b) — ¢(a)} winding number.

Since ¢(a) = ¢(b), the winding number U is an integer, and by Theorem III,
it is independent of the choice of the argument function ¢. The name winding
number points to the fact that U(¢) is the number of times the path ¢ winds
around the origin in the positive (counterclockwise) sense. The winding number
is also called indez of (.

Ezample. For ((t) = e** (k # 0 an integer) on I = [0, 2n] we have U(el*) =
k.

The winding number U(2;¢) of a closed path (|; about a point z & ((I)
is defined in an entirely analogous manner. First a representation ((t) = z +

r(t)ei"’(‘), i.e., a representation (3) of ((t) — 2, is constructed, and then one sets

U(si¢) = 5-{9(0) - (@)}

The earlier statements about U also hold in this case.
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Theorem. Let C = ((I). The winding number U(z;() is constant on each
component of the open set G =R?\ C.

Proof. Tt is sufficient to show that the function U(z) := U(z;¢) is continuous
in G. To see that this is the case, let 2, z; € G and ¥|(p,;) be a path connecting
2 and 2p in G. If U is continuous, then so is the function h(t) := U(9(t)).
Since h(t) is integer-valued, it follows from III(a) that & is constant on [0, 1] and
hence that U(z;) = U(22).

To prove the continuity of U at a point 2 € G, we consider points 2* such
that |z — 2*| < p := dist (z,C). Then |z — z*| < |{(t) — 2|, and hence

¢(t) —z* z—z*
Re((t)——z = Re (1+((t)——z> > 0.
By Corollary III the function

¢(t) — 2

() -z’

where ¢(t) = arg({(t) — z), is a continuous argument function. Clearly, ¢*(t) —
#(t) and with it U(z*) — U(z) as 2* — 2. |

¢* () = ¢(2) + Arg

We come now to the Jordan curve theorem. This is one of those theorems
that appear obvious on the surface but are difficult to prove. A proof can be
found in textbooks on topology or complex analysis, e.g., R.B. Burckel (1979).

V. Jordan Curve Theorem. A closed Jordan curve C separates the
plane into two connected parts. More precisely: The open set R? \ C consists
of two components, a bounded component Int(C), the inside, and an unbounded
component Ext(C), the outside of C, and C is the boundary of each component.

If C is generated by the closed Jordan path ¢, then the winding number
U(z;¢) is +1 or —1 in Int(C) and zero in Ext(C).

Positive and Negative Orientation. One says that the path ( is positively
oriented if the winding number is +1 in Int(C) and is negatively oriented if it is
—1 there. Intuitively, positive orientation means that the interior lies to the left
if one proceeds on C' in the direction of the path. The unit circle is positively
oriented in the conventional representation z = e, 0 < t < 2.

VI. Simply Connected Domains. A domain G C R? is called simply
connected if the inside of every closed Jordan curve lying in G also belongs
to G. This property means that G does not have any holes. The notion of
a simply connected domain arises in 3.III and in the existence theorem 21.I1,
among others.

Ezercise. A plane domain G said to be convez if the line segment Z72z7 con-
necting two arbitrary points 23, 22 from G also lies in G; it is called starlike
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with respect to a point a € G if for every z € G, @z C G. Prove: Every con-
vex domain is starlike, and every starlike domain is simply connected. Give an
example of a nonconvex starlike domain.

VII. Level Curves. For a continuously differentiable function F' : G C
R? — R (G open), we consider the level sets

My ={z€G:F(z)=a} = F (o).

A point 2z where grad F((z) = 0 is called a critical (or stationary) point of F.
The following theorem gives a criterion for level sets to be closed Jordan curves.
It plays an important role in the investigation of periodic solutions to differential
equations.

Theorem. Let G C R? be open and F € CY(G,R). If Mq = F~(a) is a
nonempty compact subset of G that does not contain eny critical points, then
M, consists of finitely many smooth closed Jordan curves.

Proof. The implicit function theorem implies that in a neighborhood of a
point zg € M, the equation F(z,y) = o can be resolved either in the form (i)
y = f(z) or (ii) z = g(y). More specifically, there exists an open neighborhood
R = I x J of z with I = (a,b), J = (c,d) and in, the case (i) a function
f € C*(I) such that F(z, f(z)) = a in I and F(z,y) # o for all (z,y) from R
with y # f(z). This means that

RO M, =graph f|f =: C, RN M, = graph f|; =: C°.

Here C is a Jordan curve with the parametric representation z = {(t) = (¢, f(t)),
tel,and C=C%U{7,2"}, 2 = ((a), 2" = ({(b). In the case (ii) the statement
is similar with {(t) = (g(t),t), C = ¢(J), 2’ =((c), - - --

Every point of M, is associated with such a rectangular neighborhood. By
the Borel covering theorem, a finite number of these neighborhoods, say R,
..., Rp, that already cover M, can be chosen from this collection. We modify
the above notation,

2t € Ry =1k x Ji, I = (ag,bk), Jk = (ck, di),
Cle =R, N My, Ci =kaMa =C,2U{z;€,z;c’ )

and associate the corresponding parametric representation (i|r, with L, =
[a%, ], where L = I in case (i) and LY = Jj; in case (ii).

We assume further that no unnecessary rectangles appear, i.e., that from
Ck C C it follows that k = |. We start with R; and assume that case (i) is
present. We have Ry N M, = C; = ¢1(L1). The path (1|, bas an orientation
(from left to right), the endpoint 2{ = ¢;(}) does not lie in R;. Thus there
exists a rectangle, say Rj, with 2{ € Rp. An end piece Cf = C1 N Ry of C; is
simultaneously a starting piece of C;. We carry the orientation of C) over to Cs
in that we reorient (; if necessary (however, we retain the notation (2 as well
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as zy, z4 for the initial and terminal points); cf I.(c). Again 2§ = (3(b}) € Rs.
There exists a rectangle R3 that contains 23 and in which C3 = CJ U {4}, 2/
lies. By assumption C; is not a subset of C3; hence z; € C2. We proceed in this
manner. Since M, is covered by a finite number of rectangles Ry, the following
case arises at, say, the mth step: We have 2}, := (pn(b),) € Rm, but z,, € Rg
for some k < m, and hence 2/, € C2. Since R := Ry U---U Rp, is open and
all points of C, U - - - U Gy, with the exception of 2| are interior points of R, the
path ¢, can enter R only at the point z{. With this we have essentially shown,
that C =C,U---UC,, is a closed Jordan curve.

In order to obtain a unified representation (|, for C from the separate para-
metric representations (x|y, of the individual curve segments Ci, one must first
decrease the size of the Ly such that the curve segments no longer overlap
but rather connect to one another. On the new intervals Ly = [ak, B8] that
arise in this process we have (;(61) = (2(az2). However, only ¢{(81) = A(3(az)
with A > 0. In order to get A = 1, one replaces the parameter ¢ in (2 by vt
and Lo by %Lz, using a suitable 4 > 0. Proceeding in this way successively
with (3,...,{n—-1,Cn, one obtains new representations of the C, for which
Ce(Br) = Ces1(ons1) and G(Bk) = Ciyy(ak41) (with the understanding that
¢n+1 = (1). By coupling the parametric representations (cf., I.(b)) one eventu-
ally obtains a smooth closed Jordan path for C satisfying the conditions I.(a).

[ |

As a simple consequence, one obtains the following useful theorem.

Theorem. Let G be a simply connected domain and suppose F € C(G)
has a global mazimum at the point 2y and no other critical points in G. Let
F(2) =: B and let there ezist an A < B (A = —oo is allowed) such that
for every sequence (2,) in G with limz, € G or lim |2,| = oo the relation
limsup F(z,) < A holds.

Then for every a € (A, B), the level set C, = F~*(a) is a closed smooth
Jordan curve and F(2) > a in Int(C,) and F(z) < a in Ext(Cy).

It follows immediately that zp € Int(C,) and C, C Int(Cp) for A < 8 <
a< B. ’

Proof."Let A < a < B. Since G is connected, (A,B) C F(G), and hence
M, = F~}(a) is not empty. Assume that M, is not a compact subset of G.
Then there exists a sequence (2,) in M, with limz, € G or lim|z,| = oo,
which leads to a contradiction to the assumptions because F'(z,) = a > A.
Hence M, is compact, and by the previous theorem there exists a closed Jordan
curve C, C My. We write I, for Int(C,,) and E, for Ext(C,). Since 2 is the
only critical point, F has no local minimum in I, and we have F(z) > a in I,.

Let A< B<cand M ={z€G:B < F(z)}. Using a similar argument,
one sees that M is a compact subset of G. The set N = M \ I, is likewise
compact. Let ¥ = max F(N) = F(z,) with z; € N. From v > a it follows that
21 € E,, but since E, does not contain any critical points, this case is ruled
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out. Therefore, we have v = a. A point 2 € E, with F(21) = a would also be
critical, and therefore F(z) < a in E,. |

VIII. Autonomous Differential Equations in the Plane. We now
give some important results on autonomous differential equations in the plane.
The results in this subsection do not make use of the previous theorems.

First some preliminary results. Here I = e, 8] and J = [a, b] are compact
intervals. N

(a) Let the function A : J — R be continuous and locally injective (i.e., for
every t € J there exists a neighborhood U such that the restriction h|yny is
injective). Then h is injective in J and hence strongly monotone increasing or
decreasing.

(b) Let ¢|r be a Jordan path, C = {(I), and z|; a smooth path with 2(J) C
C. Then z is a Jordan path, and there exists a uniquely determined continuous
and strongly monotone function h : J — I with 2(t) = {(k(t)) for t € J.

Proof. The proof of (a) is elementary. First, h is injective in an interval
[a,a + €] and hence, for example, strongly increasing. If ¢ = sup{t € J =
h is strongly increasing in [a, ]}, then the assumption ¢ < b leads to a contra-
diction.

(b) Because of the compactness of I and the bijectivity of { : I — C, the
inverse function (! is continuous and injective, and hence h=("loz:J — I
is continuous. From 2/(t) = (z'(t),y'(t)) # 0 it follows, to take a specific case,
that z'(t) # 0. Therefore, z is strongly monotone in a neighborhood U of t,
and therefore z and also h are injective in U. By part (a), k is injective in J.
Clearly, h is uniquely determined by z=(oh <= h=("loz. [ |

In the example of the mathematical pendulum (11.X.(d)), three kinds of
level curves arise: closed Jordan curves, separatices, and infinite curves. We
can now give an answer in general to the question whether a solution of an
autonomous system

&= f(z,y), ¥=g(z,9) ©)

that begins on such a curve traces out the entire curve. We assume that f and
g are locally Lipschitz continuous in a plane domain G and refer to the results
from 10.XT.

Theorem on Periodic Solutions. Let C C G be a closed Jordan curve
and (f,g) #0 on C. Let the solution z(t) = (z(t), y(t)) of (4) with the mazimal
interval of existence J° = (a,b) (00 < a < b < o) run along C; t.e., let
2(J°) C C hold. Then z(J°) = C, J° =R, and the solution 2(t) is periodic.

Remark. The significance of this theorem comes from the fact that in impor-
tant cases the trajectories are determined as level curves of a potential function
F(z,y) as described in 3.V. Examples of this type were presented in 3.VI-VII,
11.XT and elsewhere.
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Proof. By 10.XI.(a) J° = R. We may assume that C' = {(I) with I = [a, §],
¢(a) = ¢(B) = z(0); cf. I(a). Let c = sup{t € J° : 2([0,t]) # C}. Clearly,
0 < ¢ < oo. For arbitrary ¢’ < ¢, 2([0,¢]) is contained in a (not closed!) Jordan
curve C' # C, C' ¢ C. By (b) we have (i) z(t) = ¢((h(t)) for 0 < t < ¢/,
where h is injective. We assume that A is strongly monotone increasing (if not,
the path ( is reoriented). Thus since ¢’ is arbitrary, equation (i) holds in the
half-open interval [0,c). Here h(0) = a, and we set v = lim;_,.— h(t). By (i),
z(t) = {(v) € C as t — c. If ¢ = 0o, then by 10.XI.(h), {(v) would be a critical
point of the system (4), in contradiction to the assumptions. Therefore, ¢ < co.
We set h(c) = . Then h is continuous in [0,c], strongly monotone increasing,
and (i) holds in [0, ].

The assumption v < § contradicts the maximality of c, since then the curve
z([0, ¢]) is disjoint from the curve segment ¢((v, 8)) and thus 2([0, c+€]) # C for
small positive e. Therefore, we have v = (3, i.e., z(c) = 2(0), and it follows from
10.XI.(b) that 2(t) = z(t + ¢) in R. Finally, from (i) we have that z([0,c]) = C
and c is the smallest positive period of z(t).

(c) Open Curves. Let the function {: I° = (o, ) = G (—o0 < a < f < )
be continuous and injective, let C° = {(I°), and assume that the inverse function
¢~1:C° — I° is continuous. Then we say that ¢ is an open Jordan path and
C"° is an open Jordan curve.

Remark. If the domain of ¢ is not compact, then the inverse function is not
continuous in general. However, {~! is continuous if one requires, in addition,
that there not exist a sequence (fx) in I° with the properties limty = o or 3
and lim {(¢x) € C°. This assumption is, by the way, necessary and sufficient for
the continuity of (1.

Corollary. Let(|ro be an open Jordan curve, C° = {(I°) C G, and (f,g) #
0 in C°. Let the solution z(t) = (z(t),y(t)) of system (4), with the mazimal
interval of existence J° = (a,b), satisfy z2(J°) C C°. Then 2(J°) = C°. Further,
z=C(oh, where h: J° — I° is continuous and bijective.

Proof. If J' C J° is a compact interval, then C' = z(J’) is compact; it
follows that (~1(C’) is compact and hence is contained in a compact interval
I' C I°. Because (f,9) # 0, 2| is a smooth path. Applying (b) to I’ and J’,
we have 2(t) = ((h(t)) in J', where h : J' — I' is continuous and (say) strongly
monotone increasing. Since h is uniquely determined and J' is arbitrary, one
obtains 2(t) = {(h(t)) in J° with h : J° — I° continuous, strongly increasing.

It remains to show that h(J°) = I° = (a, B); the remaining statements of
the corollary follow then without difficulty. We confine ourselves to the proof
of lim¢_ h(t) = B. Suppose lim;_,; h(t) = v < B. From this it follows first that
lim;_, z(t) = ¢{(7) € C°. The assumption b < oo contradicts the maximality
of b. From b = oo it follows as above.that {(v) is a critical point of (4). This
contradiction shows that v = b. One shows correspondingly that h(t) — « as
t—a. R
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Remarks. 1. This result can be applied to the case where (|, is a
path connecting two stationary points of (f, g) that does not contain any other
stationary points. As t — « or 3, the solution tends toward the corresponding
stationary endpoint. The behavior is similar if |{(¢)| tends to oo as ¢ — o or
B. In this case the solution z(t) also traces out the whole curve C°. Both cases
occur in connection with the mathematical pendulum in 11.X.(d).

2. The above theorem and its corollary answer the question raised in 3.V.(d),
while the question 3.V.(c) about the nature of level curves has already been
answered by Theorems VII and VIII.

8. The theorem and corollary remain true for autonomous systems in R";
the proofs carry over as well.

B. Real Analysis

We first prove some theorems on Dini derivatives and convex functions as
they relate to differential inequalities and as a particular example obtain some
important norm estimates. Then we give a proof of the Brouwer fixed point
theorem. This fundamental theorem is used in D.XII to derive the Schauder
fixed point theorem.

In this section, |- | denotes the Euclidean norm in R", and points in R™ will
not be represented in boldface type.

I. Dini Derivatives. For a function u: J — R (J an interval) the upper
and lower right-sided Dini derivatives are defined by

D*u(t) = limsup Q(s,t), D.(t) = liminf Q(s,1),
s—t+ s—t+ .

where Q(s,t) = {u(s) — u(t)]/(s — t) = Q(¢,s) is the difference quotient of w.
For the corresponding left-sided Dini derivatives D~, D_, the limit s — ¢+ is
replaced with s — {—. These definitions also appear in the text in 9.I.

In the following,D € {D*,Dy,D~,D_} represents an arbitrarily chosen
Dini derivative. However, within a single theorem or formula, D is fixed.

(a) A right-sided Dini derivative satisfies D(u + v)(t) = Du(t) + v, (2),
provided that the right-sided derivative of v exzists (with finite value). A corre-
sponding statement holds for the left-sided derivatives.

The proof of this result follows immediately from the formula
lim sup(e, + b,) = limsup a,, + lim b,
and a corresponding formula for lim inf, where (b,,) is a convergent sequence.

A differentiable function with a nonnegative derivative is increasing; this is
an immediate consequence of the mean value theorem. The following important
theorem gives a far-reaching generalization of this statment.
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Theorem. Ifu € C(J) and Du>0in J\N, where N is at most countable,
then u is monotone increasing in J.

The proof prodeeds in two steps. In the first step we assume strict inequal-
ities, Du > 0 in J \ NV, and show that u is increasing. If not, then there are
points @ < b in J with u(a) > u(b). We choose a number ¢« with the proper-
ties u(a) > @ > u(b) and & ¢ u(N) (this is possible because the set u(N) is
countable). Let c € (a,b) be the largest point with u(t) = ¢, i.e., u{c) = & and
u(t) < a in (c,b]. Since the difference quotients Q(c,t) are negative for t > c,
we obtain D*u(c) < 0. On the other hand, ¢ ¢ N, and therefore Du(c) > 0.
This is a contradiction if D is D¥ or Dy. If D is a left-sided derivative, one
takes c as the smallest point with u(tf) = @ and considers quotients Q(c, t) with
t < c. Hence u is increasing in all cases.

In the second step, we have the assumption of the theorem Du > 0in J\ N
and consider the functions uc(t) = u(t) + et (¢ > 0). It follows from (a) that
Du; > € >0in J\ N and hence from the first part that u. is increasing. The
theorem is now obtained by taking the limit as € — 0. |

As a simple consequence, one obtains the following

Generalized Mean Value Theorem. Let I, J be intervals, N C J count-
able, and u € C(J). Then

Du(t)el for te J\N = Q(s,t) €l for s,t€J, s#t.

Hint for the proof: Apply the theorem to *u(t) + A.
‘We draw another consequence, which allows a surprising application.

II. Theorem. Let the functions u,h € C(J) satisfy D*u(t) > h(t) in
J\ N, where D* denotes a Dini derivative and N an at most countable set.
Then Du(t) > h(t) for every t € J and every Dini derivative.

Proof. Let H be an antiderivative of h, that is, H' = h in J. The function
v(t) = u(t) — H(t) satisfies D*v(t) = D*u(t) — h(t) > 0in J \ N by L.(a). By
Theorem I, v is monotone increasing; hence Dv(t) > 0 for all ¢t € J and every
D. This inequality is, again by I.(a), equivalent to the conclusion. ]

Application. If u has one-sided derivatives and if v/, < f(t,v) in J, where
f is continuous, then by Theorem II, v/ < f(t,u) in J. The formulation of
many theorems found in the literature indicates that this result is not generally
known.

III. Convex Functions. The function u: J — R is called convez if
u(da + (1 —A)b) < Mufa)+ (1 —A)u(d) for 0<A <1 1)

and a,b € J. Elementary properties of convex functions, in particular, the
existence of the one-sided derivatives and the inequalities u’ (s) < u/ (s) <
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ul (t) < v/ (t) for s < t, from which the differentiability of u in J\ N (N
countable) follows, can be found in standard reference works in analysis.

Lemma. Let X be a Banach space with the norm || - || and z,y € X. Then
the function p(t) = ||z + ty|| is convez and

—llyl <p_() <P (&) < llyll for teR.

To prove the convexity, we apply the triangle inequality and obtain, with
the notation u =1 — A,
p(Aa + pb) =||z + (Aa+ ub)y||
=[1A(z + ay) + p(z + by)|| < Ap(a) + pp(b),

hence (1). In a similar manner the triangle inequality yields the estimate

lp(t + ) — p(t)] < |lhyll,

from which the second assertion follows after dividing by h and passing to the
limit (the existence of one-sided derivatives is guaranteed by convexity). B

In going from a smooth vector function u(t) to its norm |u(t)|, one generally
loses differentiability. However the following theorem shows that one-sided dif-
ferentiability is retained and that this is true even in the general case of functions
with values in a Banach space. Here the derivative of a functionu: J —» X (X a
Banach space) is defined as in the classical case: v'(t) = ’11135 [u(t+h)—u(t)]/h e

X (the limit is taken with respect to the norm of X).

IV. Theorem. LetX be a Banach space with the norm ||-||. Ifu:J —» X
is a continuous function, then the function ¢(t) := |[u(t)|| is also continuous.
Moreover, if u has a right-sided derivative at the point t, then the same holds
for ¢, and the inequality

=l (D1 < ¢4 (2) < Jlul (1]

holds; a corresponding result is true for left-sided derivatives. In particular, if
u 18 differentiable at the point t, then

—l' @I < ¢L(2) < ¢4(2) < W'Dl
Proof. From the triangle inequality we get |¢(s) — ¢(t)| < ||u(s) — u(t)|| and
from here the continuity of ¢. Now let u be differentiable to the right at ¢, that

is,

u(t+ h) = u(t) + hu! () + he(h) with hl_i.%‘+ le(n)|| = O.

It follows from the triangle inequality in the form (5.2) that
|6t + R) — llu(t) + hul ()II] < hlle(h)|
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and hence

Be-+ ) = lule) + hos, ) + ho(h) with  lim 5(k) = 0.

Using the notation = = u(t), y = v/, (¢), p(k) = ||z + hy||, we have
¢(t+ h) — (t) = p(R) — p(0) + hé(h).
The conclusion now follows from Lemma III after dividing by k. |

‘We come now to the fixed point theorem discovered in 1912 by the Dutch
mathematician Luitzen Egbertus Jan Brouwer (1881-1966).

V. Brouwer’s Fixed Point Theorem. Let B be the closed unit ball in
R™ and f : B — B continuous. Then f has ot least one fized point.

Note that since C™ is norm-isomorphic to R2", the theorem also holds for
the closed unit ball in C™.

Proof. First a preliminary remark. By applying the Weierstrass approxima-
tion theorem to each of the n components of f, one can show that for every
€ > 0 there exists a (vector) polynomial P with ||f — P|| < e.

Here and in the results that follow the maximum norm in B, || f|| = max{|f(z)
z € B} is used. Then ||P| < 1+ ¢; hence Q(z) = P(z)/(1 + €) is a smooth
mapping of B into B. It is easy to show that | f — Q|| < 2. Now assume that
T is a fixed point of Q. Then it follows that it is an “approximate fixed point”
of f satisfying |z — f(z)| = |Q(z) — f(z)| < 2¢. Thus by Theorem 7.X, f has a
fixed point if every smooth mapping of B into B has a fixed point.

‘We now prove the theorem in a seqdence of steps under the assumption that
f € CY{(B).

(a) Let

P()) =aX +2bA+c with a>0

be a real quadratic polynomial with the property P(0) <1, P(1) < 1. Since P
is convex, there are exactly two values X; and Az such that P(A\;) = P(A2) = 1;
moreover,

M<0<1<A and P(A) <1 for A <A<

Thus A\ 2 = A+ V/C with 4 = —b/a, C = (b/a)? + (1 — c)/a > 1/4, the latter
because Ay — A1 2> 1.

(b) Suppose f does not have a fixed point. Then the continuous function
| f(z)—z| is positive. Since B is compact, there exists a y.> 0 with |f(z)—z| > v
in B. For every z € B, the quadratic polynomial ’

P() = [z + Mf(z) — )
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satisfies the properties from (a): P(0) = c = |z]? < 1, P(1) = |f(z)|? < 1,

a=|f(z)—z|? > 92, and b = (z, f(z) — ). The function A\; = A\;(z) is < 0 and

belongs to C1(B), as one can read from the representation A; = A —+/C in (a).
(c) We define C'-functions g(z) := A1 (z)(f(z) — z) and

h(t,z) =z +1tg(z) for 0<t<1

and consider the integral

V(t)=/Bdethm=/Bdet <I+ta‘g—(;)) dz.

Here 0h/0z and 0g/0z are the n x n Jacobian matrices of h and g.

The proof of the theorem by contradiction proceeds as follows. We show, in
order, that (i) V(0) = |B| = 2, (volume of the unit ball), (ii) V(1) = 0, and
(iii) V'(t) = const.

Assertion (i) follows immediately from the definition of V. To prove (ii) one
first notes that |h(1,z)|2 = |z + M (z)(f(z) — z)|> = P(\) = 1. Therefore
h(1,-) maps B onto dB. Hence for z € B° the matrix dh(1,z)/dz is singular,
since otherwise a neighborhood of z would be mapped bijectively by A(1,-) onto
a neighborhood of h(1,z) by the Inverse function theorem. Thus for z € B°,
det 0h(1,z)/0z = 0, from which (ii) follows.

The proof of (iii) begins with the observation that the C-function g satisfies
a Lipschitz condition

lg(z) — g(z')| < Llz—2'| in B.

Further, g(z) = 0 for z € 0B, since in this case P(0) = |z|> = 1 and hence
A1(z) = 0. Let Q denote the projection onto the unit ball

Qz=z for |z|]<1 and Qm=£—| for |z| > 1.
It is easy to show |Qz — Qz'| < |z — z'|. Therefore, the function g(z) := g(Qz)
satisfies a Lipschitz condition in R™ with the same constant L (g is simply the
extension of g to R™ by 0 outside B). We show:
(d) For 0 <t < 1/L, the mapping h(t,-) is a bijection of B onto B.
To prove this, let hA(t,z) = z + tg(z) and let a € R™ be arbitrary. The
equation h(t,z) = a is equivalent to

z = a — t§(z).

Since the right side of this equation is a contraction with Lipschitz constant
tL < 1, there exists exactly one z = z, with A(t,z,) = a. Thus the function
h(t,-) maps R™ bijectively onto itself. Now, however,- h(t,-) is the identity
mapping on R™ \ B and equal to h(t,-) on B. Therefore, h(t,-) is a bijection of
B onto B.

(e) From the substitution rule for n-dimensional integrals it follows that
V(t) = const = ,, at least as long as h(t,-) is a bijection B — B and
det Oh(t,z)/0z > 0. Hence there is an interval 0 < t < € < 1/L where V()
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is constant. However, since V'(t) is a polynomial in ¢ of degree < n, it follows
that V(¢) =, for 0 £ ¢t < 1. This completes the proof by contradiction of the
Brouwer fixed point theorem. ]

In the following corollaries we make use of some abbreviated terminology.
We say that a subset A of a Banach space has the fized point property if every
continuous mapping of A into A has a fixed point. The Brouwer fixed point
theorem can then be rephrased: The closed unit ball in R™ has the fized point
property.

Let X, Y be Banach spaces or more general topological spaces. Two sets
A C X and B C Y are said to be homeomorphic if there exists a homeomorphism
h: A — B (a bijective mapping that, along with its inverse, is continuous).

Corollary 1. If the sets A and B are homeomorphic and if A has the fized
point property, then B also has the fized point property.

The proof is very simple. Let h : A — B be a homeomorphism and f :
B — B a continuous mapping. Then F = h™! o f o h is a continuous mapping
of A toitself. If z is a fixed point of F', then the image point £ = h(z) is a fixed
point of f, as one easily verifies. |

Corollary 2. Let the set A C R™ be compact, and let there exist a contin-
uous mapping P : R® — A with P|4 = idg4, i.e., P(z) =z forz € A. Then A
has the fized point property.

For the proof let B D A be a closed ball and f : A — A continuous. Then
F = fo P is a continuous mapping of B into itself. By the Brouwer fixed point
theorem, F' has a fixed point &, and because F(B) C A, this fixed point belongs
to A, whence £ = f(£), i.e., £ is a fixed point of f. |

Corollary 3. A nonempty, convez, and compact set A C R™ has the fized
point property.

Proof. For every z € R™ there exists, since A is convex and compact, exactly
one “closest point” y = Pz € A with dist (z,A) = |z — y|. The mapping P,
also called the (metric) projection on A, is continuous, and the assertion follows
from Corollary 2. |

Remark. A property of sets that is carried over to the image set by a home-
omorphism is also called a topological property. For example, openness and
compactness are topological properties. Corollary 1 shows that the fixed point
property is also a topological property.
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C. Complex Analysis

Here we give some tools from complex analysis that are used when working
with ordinary differential equations in the complex domain. We are dealing pri-
marily with the Banach space of holomorphic functions introduced in Example
5.III.(d) and with the properties of holomorphic functions described in 8.I. In
the following, G is a region in the complex plane.

I. Holomorphic Functions. A function f : G — C is called holomor-
phic in G, written f € H(G) (21.1), if f is continuously differentiable (in the
complex sense) in G. In most textbooks on complex analysis, only differentia-
bility is required; the continuity of the derivative then follows as a theorem.
The next two theorems form the foundation of the Cauchy function theory. We
formulate them only in the generality that is necessary for our purposes.

II. Cauchy’s Integral Theorem. IfG is simply connected, f € H(G),
and (|1 is a piecewise continuously differentiable closed path in G with I = [a,b],
then

b
[1@a= [ rewrcwa=o
¢ a
The integral (29 € G is fized)
F(2) =/ f(z")d7
is independent of path (i.e., for each path (| in G with {(a) = zp, {(b) = z, the

integral has the same value), and F is an antiderivative of f. The latter means
that F € H(G) and F' = f in G.

III. Cauchy’s Integral Formula for the Disk. If the disk B : |z —
20| < r, together with its boundary 8B, lies in G, then for f € H(G),

1 f

f()—27rz sl—z

d( for ze€ B. (1)
Here the boundary of the disk OB is oriented in the positive direction.

Proofs for these two theorems can be found in any textbook on complex
analysis.

IV. Applications of the Cauchy Integral Formula. We begin by
expanding the factor 1/(¢ — z) that appears in (1) in a geometric series,

—Z((Z‘z°) for |z—z|<[¢—zo| =T

(= 20)™
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This series is uniformly convergent in every concentric disk |z — 25| < p < 7.
Therefore, (1) can be integrated termwise and one obtains in this manner the
following propositions.

(a) Under the assumptions from III, f has a power series ezpansion

o]
f(2)= ch(z —z)" for |z—2z|<T. (2)
n=0
(b) Let (fn) be a sequence from H(G) that convergés locally uniformly in G.
Then the limit function f(z) = lim f,(z) belongs to H(G).

The hypothesis means that the sequence is uniformly convergent in every
closed disk B C G. Thus the limit function is continuous in G. If f, is written
in the form (1), then the limit as » — oo can be taken under the integral sign,
i.e., the limit function f also satisfies equation (1). By (a), f can be expanded
in a power series of the form (2). Therefore, f is holomorphic in B. Since B is
arbitrary, f is holomorphic in all of G.

The next theorem is a simple consequence of (a).

V. Theorem. Iff € H(G) and if the disk B : |z2—z| < 7 lies in G, then
f has a ezpansion (2) that is valid at least in B, which implies that the radius
of convergence of this power series is > ro = dist (20,0G) (ro =0 if G =C).

VI. Theorem. Let the function p: G — R be continuous and positive.
Then the set Hy(G) of all functions f € H(G) such that sup p(2)|f(z)| < o
G

with the norm defined by
£l = sup{p(2)|f(2)| : z € G}

is a Banach space. -

Proof. We refer to 5.III for the proof that H(G) is a normed space. To
prove completeness of this space, we note first that for each disk B with B C G
there exist positive constants a, f such that 0 < & < p(z) < 8 in B. Thus
the inequalities |f(2)| < ||fll/p(2) < ||fll/e hold in B. From this it follows
that a Cauchy sequence (fn) with respect to the norm || - || converges uniformly
in B, hence converges locally uniformly in G. The limit function f is then
holomorphic in G by IV.(b). A Cauchy sequence is bounded, say, ||fr|| < C for
all n. Since p(z)|fn(2)| £ C in G, the limit p(2)|f(2)| is also bounded by C,
which implies that f € Hp(G). From the inequality || fn — fn+x|| < € for n > ng,
k > 1 we obtain || f, — f|| < & by letting k — oo. Thus lim||f, — f|| = 0. |

One sees from the proof that the continuity of p is not important. What is
needed is an estimate of the form 0 < & < p(z) < B in each closed disk B C G
(¢, B depend on B).

Theorem V is used, in particular, in the proof of Theorem D.VI. Banach
spaces of holomorphic functions of the kind described in Theorem VI arise in
the existence theorems in 8.1, 10.X, and 21.11.



350 Appendix

D. Functional Analysis

We bring together here some ideas and theorems from functional analysis
that play a role in the subject matter of this text. The topics in this section
are selected to convey a deeper insight into functional-analytic methods of proof
related to the contraction principle. The section concludes with a proof of the
Schauder fixed point theorem.

In the following, X generally stands for a real or complex Banach space with
the norm | - |-

I. Convergence of Series. The convergence of a series ) z, with z, €
X is defined in 5.IV. Such a series is said to be absolutely convergentif y_ ||z.| <
oo. As in the real case, the following hold:

(a) If Y z, is absolutely convergent, then Y, z,, is convergent and ||} z,|| <

The comparison criterion remains valid. It states that |[z,| < an, where
3" an < 0o implies that the series Y z,, is absolutely convergent. The classical
proof for z, € R carries over. Comparison with the geometric series leads to
the

(b) Root Criterion. The series is absolutely convergent if ||z,['/* < ¢ < 1
for n sufficiently large and divergent if ||z,[|'/™ > 1 for infinitely many n.

II. Equivalent and Monotone Norms. Two norms |- ||, || - |’ in a
vector space X are called egquivalent if there exist positive constants a, g such
that

aS—”z—”Sﬁ for z#0. (1)
llz]l
In this case we write || - || ~ || - ||’. This relation is an equivalence relation in
the set of all norms defined in X i.e., it is reflexive (|| - || ~ || - ||), symmetric
(Il -l ~ I - |I" implies [| - | ~ |- |}) and transitive ([| - | ~ || - [I" and | - | ~ ]| - |
implies | - || ~ || - |").

Let X be a normed space of functions f : D — Y, where D is a nonempty
set and Y is the space R™ or C™ (or some other Banach space) with the norm
|-]. The norm || - || in X is called monotone if for f, g € X

|7()| < |g(2)| for z € D implies that [|f|| < [lgl|.

All of the norms that appear in the examples from 5.III are monotone.

III. Bounded Linear Operators. The set £(X) of all linear mappings
A X — X with finite, .

operator norm || 4| := Z{”Az” lzl| = 1} = sup { ”” ”” z # 0}

is itself a Banach space. The mapping A is Lipschitz continuous, ||Az — Ay|| <
L|ly — z||, and ||A|| is the smallest Lipschitz constant for A.



D. Functional Analysis 351

(a) For A, B € L(X) we have ||AB|| < ||A]|||B|, in particular |A™|| < ||A]|™.

(b) If two norms || - ||, || - || in X are equivalent, then the corresponding
operator norms are equivalent in £(X). It follows from (1) that
a_JAl _8
< 2 for A0 2
FE14T = a @)

IV. The Spectral Radius. The spectral radius 7(A4) of A € L(X) is
defined by

— i n|l/n _ n||l/n
r(4) = lim (A7 = inf A7,

The existence of the limit and the equality of the two expressions are proved
by first using III.(a) to establish the inequality am+n < ama, for o, = || A7,
from which if 8, = Inay,, the inequality (*) Bmi+n < Om + Bn follows. Then
one applies the following theorem from real analysis: From (%) it follows that
lim 8, /n = inf B, /n. A proof for this can be found in Pélya—Szegé (1970, Chap.
I. Problem 98).

The operator A is called nilpotent if AP = 0 for some power p and quasinilpo-
tent if r(A) = 0. : '

From II.(b), we obtain in a simple manner the following:

(a) For two equivalent norms, the spectral radius has the same value. In
other words, the spectral radius does not change when the norm is changed to
an equivalent norm.

[ <]

V. Power Series. Let f(s) = Z ¢ns™ be a real or complex power series
0
with positive radius of convergence r. For A € £(X), f(A) is defined to be the
o0
series Z cnA™. Here A = I, the identity mapping.
0

Theorem. If the series for f has the redius of convergence r > 0, then the
series

f(a)=ian" with A€ L(X)

n=0

is absolutely convergent if r(A) < v and divergent if r(A) > r.

The proof follows immediately from the root criterion I.(b). Let 7(A) < s <

r. For large n we have ||A™||'/™ < s; hence ||cp A™|| < cns™ and 3 |eq]s™ < 0.
On the other hand, it follows from 7 < s < 7(A) that |A™||/* > s and
-lenls™ > 1 for infinitely many n (Cauchy-Hadamard formula for the radius of
convergence of a power series); hence |c,|||A™|| > 1 for these n. |
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(a) The series obtained, when this process is applied to the geometric series
(1—s)"t =3 s™ with A € £(X), is called the Neumann series. If r(4) < 1,
then

o0
(I-A)1=) A" eL(X). (3)
n=0
The theorem guarantees the absolute convergence of the series, and we have
(I-A)> A" =3 A" - Y A™*1 = ], which shows that > A™ is indeed the
inverse of I — A (the index n runs from 0 to o).

As a first application of the Neumann series we show that the spectral radius
is the radius of the smallest circle about the origin that contains the spectrum
(this is the property that gives it its name). We confine ourselves here to the
case X = C".

VI. Spectrum and Spectral Radius in the Finite Dimensional
Case. Let A be a complex n X n matrix, which we identify with the linear
mapping in C" generated by A. The spectrum o (A) of A is the set of eigenvalues
of A, that is, the set of all A € C with the property that det(A — AI) =0.

Theorem. For A € L(C™), r(A) = max{|A| : A € 0(4)}.

Proof. Let p=max{|)\| : X € 6(A)}, let A be an eigenvalue with [A| = p, and
let = be a corresponding eigenvector. From Az = Az it follows that A"z = A"z
and hence ||A™|| 2 |A|™ = p™. This proves the inequality p < r(A).

The matrix A — Al is invertible for |A|] > p. Thus the matrix R(z) =
(2A—1I)~! exists for |2| < 1/p (if p = 0, this is true for all z € C). By Cramer’s
rule R(z) is a rational function of the form Q(z)/Pn(z) (Prn, Q@ polynomials),
where P,(z) = det(zA — I), which has no zeros in the disk |z| < 1/p. By
Theorem V, the Neumann series

o0
R(z)=(zA-I)"'=~>"2"4A"

n=0
diverges for 7(zA) = |z|r(A) > 1, and thus its radius of convergence is < 1/r(A).
On the other hand, R(z) is a holomorphic function for |z|] < 1/p, and from
Theorem C.V it follows that the radius of convergence of the series (we are
dealing here with n? scalar series) is > 1/p. Thus the reverse inequality p > (4)
holds. |

The next theorem is of fundamental importance for the application of the
contraction principle.

VIL. Theorem. Let A € L(X) and 7(A) < a. Then there ezists an
equivalent norm || - ||' (in a Hilbert space, an equivalent Hilbert norm |- ||') with
the following properties:

(a) 4l < e

(b) If B commutes with A (AB = BA), then ||B|' < ||B]|.
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Proof. We choose an 7 such that ||A*||}/” < o and define

|A:1: ||A2:1: A 1g|
Jolf = Yoy + 1420 12l Il @
Clearly, || - || is a norm and ||z|| S llz]|” £ K||z|| for a suitable K. Moreover we
have
|4z’ _ Azl 114" <] | [iA%s]
a o« a1 a®

Under our assumptions, ||A™z| < o™||z||, and therefore ||Az||’ < «||z||’, which
implies (a).

In the case of a Hilbert space with inner product {-,-), one uses the inner
product

Az, Ay) Ar g Ay
(x,y)'=(w,y)+(T+' (—W) 5)
The proof of (a) then runs along similar lines. Part (b) follows from the estimate
|A*Bz| < ||B|| | A*z|| without difficulty. |
We draw some additional conclusions.
(c) The spectral radius r(A) is the infimum of ||A|’, where all norms || - ||’
on X that are equivalent to || - || are admitted.

(d) If A and B commute and if T(A) < a, 7(B) < B, then there ezists an
equivalent norm || - | with ||A| < a aend ||B|’ < B.

To prove this result one applies (4) twice obtaining first ||A||’ < « and then,
beginning again with || - ||’, a norm || - || such that ||[B||” < 8. Now (b) shows
that A" < ] < o .

() If A and B commute, then (A + B) < r(A) + r(B) and r(AB) <
r(A)r(B).

(f) The spectral radius is an upper semicontinuous function; i.e., for A €
L(X) and € > 0, there exists a § > 0 such that 7(A + B) < r(A) + ¢ for all
B € L(X) with || B| < 6.

Both theorems follow immediately from (c) and (d). Thus, for example,
r(A+B) < |A+ B| < ||A]l' + | B||’ from which one obtains the first inequality
in (e) as well as (f). | |

In conclusion, let it be noted that in place of (4) and (5) one could also use
a change of norm of the form

-] [+
Izl =) [A*zlla™, or (z,y) =) (A"z, A"y)a™", (4)
n=0 n=0

respectively. The series are convergent because 7(A/a) < 1. Again (a) and (b)
hold (Exercise!). Part (a) of the theorem was proved in a similar form for a
Banach space by R.B. Holmes (1968).
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VIII. A Fixed Point Theorem. Let A € L(X) with r(A) < 1 and
b€ X. Then the fized point equation

z=Az+b (6)
has ezactly one solution £ = (I — A)~'b. The fized point depends continuously
on A and b, i.e., for every € > 0 there exists a 6 > 0 such that for the solution

of a nearby equation y = By + c with |A— B| <6, |[b—c]| < 6 the estimate
lz — yl| <€ holds.

Proof. Clearly, it is sufficient to prove the continuous dependence with re-
spect to an equivalent norm. We choose positive numbers p, o, § and a norm
[| - || such that ||A|' < p—6 < p < 1 and ||b]|' < 0 — 6. Then for B, ¢
with ||[A — B||' < 8, [|b—¢|/ < § we have ||B|' < p, |lc]/ < o, and from
lyll” < 1Byl + liell” < pliyll’ + o it follows that [ly[" < ¢/(1— p) =: . From
the identity

z-—y=Alz-y)+(A-Bly+b-c,
one obtains the following estimate for the difference z = =z — y:
6(1+
Il < pllalf + 66 +6 = ol < 22,
One can now make § smaller in order to get the inequality [[z]|’ < e. B

IX. The Integration Operator. Let X be the space of continuous
functions u : J — Y, where J = [a,b], Y = R" or C, and let K : X — X be the
integration operator

T
(Ku)(z) = / u(s) ds.
a

It has the operator norm || K|| = b— a with respect to the maximum norm in X
(exercise!). However, if one uses the equivalent norm

lulla := max{|u(z)le”**:z € J} with a >0,
then || K[« < 1/a. Both statements are contained implicitly in the proof of the
existence theorem 6.1. For the record:

Theorem. The integration operator is quasinilpotent in the space C(J); that
is, r(K) =0.

Incidentally, this theorem also follows from the well-known representation of
K™,

n 1 “ n-1
(K™)(@) = = / (z — 8)"Yu(s) ds,
that appears in the remainder term of Taylor’s theorem.

Ezercise. Calculate the norm of K in the space L (a,b). Estimate the norm

of K relative to the weighted L;-norm |[ju]q := f: e~*|u(t)| dt and show that
K is quasinilpotent in L, (a,b).
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X. The Initial Value Problem. We consider the initial value problem
(6.1) (or (10.1-2))

Y =f(oy), () =nsy(@)=n+ /E oy ()

in the interval J = [¢, £ + a]. Here we take X = C(J).
Using the Nemytskii operator F : X — X, defined by

(Fu)(z) = f(z,u(z)), (8)
we can write the initial value problem in the abbreviated form
y=n+KFy=Ty. (7')

Now, if f satisfies a Lipschitz condition |f(z,y) — f(z,2)| < L|y — 2|, then
|(Fu)(z) — (Fv)(z)| < L|u(z) —v(z)| clearly holds. Because of the monotonicity
of the norm || - ||a, it follows that |Fu — Fu|o < L]lu — v||a. After these

preliminary observations, the proof of the existence—uniqueness theorem 10.VI
takes only one line

' L
[Tu = Tofla = [I(Fu = Fo)la < | KllallFu~ Folla < —]lu~vlla (9)
in particular, < 3||u — v|ls if &= 2L.

Remark. An estimation theorem similar to that in 12.V can be obtained
from this result together with Theorem VIIL

Our next topic is the fixed point theorem discovered in 1930 by the Polish
mathematician Juliusz Pavel Schauder (1899-1943). We derive it using the
Brouwer fixed point theorem; cf. B.V. First some preliminaries.

XI. Convex and Compact Sets. Let X be a Banach space with the
norm || -||. A set A C X is called convez if for arbitrary a,b € A, the connecting
segment ab = {Aa+ (1—A)b: 0 < A < 1} belongs to A. The convez hull conv A
of A is the intersection of all convex supersets of A, hence the smallest convex
superset of A. )

(a) For a finite set F = {z,,...,2p} C X,

convF ={Mz1+ -+ ATp: A 20, A\ + -+ Apzp = 1}

Compactness and relative compactness of sets were defined in 7.X. For com-
pact sets the following result is true.

(b) Borel Covering Theorem. From a covering of a compact set A by open
sets, it is possible to choose finitely many sets that cover A.

Let U C X be a finite dimensional subspace of X of dimension p and
{e1,...,ep} a basis for U. The elements of U have a unique representation
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as linear combinations of the basis elements, which defines a bijective linear
mapping L from U onto RP: The image of £ € U with the representation

x=§1$1+"'+§pxp is L(x)=§=(§1,.,,,§p).GRP

If ¢ = L(z), then ||’ := ||z|| defines a norm on R?, and L is a norm isomorphism
of U to (RP,|-|'). Since L is linear and all norms in RP are equivalent, a set
A C U is closed, compact, or convex if and only if the image L(A) has these
properties.

(c) A closed, bounded subset of a subspace U ¢ X with dimU < oo is
compact. In particular, the convex hull of a finite set F' C X is compact.

These statements also hold for complex Banach spaces (where then £ € CP).
Finally,we recall a definition from 7.X: A mapping T : D C X — X is called
compact if the image T'(D) is relatively compact.

XII. The Schauder Fixed Point Theorem. A continuous, compact
mapping T of a convezx, closed set D C X into D has at least one fired point
(X is a Banach space).

Proof. By the fixed point theorem 7.X, it is sufficient to find, for every € > 0,
a point z € D with ||z —Tz| < e. Thus let € > 0 be given. The set B =T(D) is
compact by hypothesis. From the set of all balls B, (b) with b € B we can select,
by the Borel covering theorem XI.(b), a finite number Be(b;) (¢ =1,...,p) that
cover B. Let F = {b,...,bp,} C B and C = convF. By XI.(c) and the
convexity of D, the set C is a compact, convex subset of D. Now we define a
continuous mapping ¢ : B — C by setting (all sums run from i =1 to { = p)

_ . _ pi(z)
¢(z) =D M(z)b:; with Ai(z) = Ok

Here pi(z) = (€ — [z — bi[|)+; that is,
pi(z)=0 if |z-bil>e, pi(z)=e~|lz—b if [lz: -8l <e,

and p(z) = 3 pi(z). Since for every z € B there exists a by with ||z —bi| <,
we have p(z) > 0 for £ € B, and therefore ¢ is continuous. Clearly, A;(z) > 0
and Y A;(z) = 1; hence ¢(B) C C by XI.(a). Further, because z = ) Ai(z)z,

l6(2) -2l = |- Ata)(t - 2)|| < 3o Asta)llbi - all < (*)

for = € B, since here only summands with ||b; — z|| < € appear (if ||b; — z|| > €,
then A; = 0). The mapping S = ¢ o T maps D into C; its restriction to C is
thus a continuous mapping of C into itself. Since C is convex and compact,
there exists, by Corollary 1 and Corollary 3 to the Brouwer fixed point theorem
in B.V., a fixed point o = S(z¢) = ¢(T'zo) € C. From (*) one now obtains

llzo — Tzol| = ||¢(Tzo) — Tzo|| < €,
i.e., o is the desired e-fixed point of T'. |



Solutions and Hints for
Selected Exercises

Exercises in § 1

XIL (a) y=(z~c)forz<¢c,=0forc< z<d, = (zx—d)3 for z > d,
assuming ¢ < d. The cases ¢ = —00, d = 0o are also allowed.

B)y=0forz<c,=(z—c)®or—(z—c)?for z > c (~00 < ¢ < o0).

(c) y=3(1—cosh(z —c)) forz < ¢, =0 for c < z < d, = (1 — cos(z — d))
ford<z<d+m=1forz>n+d(-00<c<d<o0).

(d) For z = y? one obtains 2’ = 2e7%/(2z + %), z(2) = 0 and hence z(z) =
In(1+ In(2z/(z+2))), y = £+/z for £ > 2 (since z > 0). Here (and occasionally
elsewhere) it turns out that f is not defined at the point (£, 7).

(e) y =exp(e-sinz/(1+cosz)), 0 <z < .

() y = 1¢71(1+ir+4sing) for m—a < z < 27 + a, where o =
arctan (17—3) =~ 0.1432 and ¢! is the function inverse to ¢(s) = s+sins. Note
that ¢ is strictly inéreasing in R, but ¢'((2k+1)7) =0, i.e., (¢71)'((2k+1)7) =
oo for k € N. The function y is continuous in R, and the solution exists in R, if
we agree to allow the value ' = oo at the points where y = 2.

(gy=z+2,y=z+4,y=z+3—tanh(z —c), y=z + 3 — coth(z — ¢)
(ceR).

(b) [ay(2 - y)/(yly — 1)) = 2 [dz/z implies log(ly — 1|/y*) = log Cz®.
By direct calculation one sees that for any solution y(z) the functions y(—z)
and y(azx) (@ > 0) are also solutions. We choose, e.g., C = 1/2 and get
ly — 1|/y% = z%/2. These are two quadratic equations for y, and each has two
solutions. Obviously, y =0, y = 1, and y = 2 are critical values. One obtains
with @ = v/2/2,

n=>0+v1-2z2)/z2 for O<z<a (3 >2),

y=01—-vV1i-2z2)/z2 for O0<z<a (1<yz<2),
ys = —(1 — V1+22%)/2?
ya = —(1 + V1 + 22%)/2?

For z > 0 small, 1 (z) = 2/2%, y2 = 1+ 322, y3(z) & 1 — 122, yu(z) = —2/z2.

=h

or >0 (0<ys<1),

=h

or >0 (yq<0).

357
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In addition, there are solutions y = 0 and y = 1. By Theorems VII and
VIII, exactly one solution goes through each point (§;7) with £ # 0, 7 # 2. On
the other hand, from the solutions given above (with z replaced by *az) we
can find a solution through the point (£,7), which shows that all solutions are
found.

(i) y = z sinh(ln C|z|) (z # 0) with C > 0.

() ¥ =2y/z.

(k) ¥ = 2zy/(z? + 1).

(1) ¥’ = z3(seny)(v/1 +4ly|/z* - 1).

Exercises in § 2

V. (a) The solution y =z exists in R. All other solutions

y=m+‘ez’/<c-/ et’dt), CeR,
[¢]

exist in intervals that are bounded on one side.
(b) y = ce®os* + 2(cos:;: +1) and y = (c+sinz — :sin?z)/cos® z (c € R).
(¢)y=[(1+1/n%)e=3="/5-1]"3 forn # 0,y = 0 for n = 0. Here s = t~1/3
is defined as the inverse function of t = s73, i.e., t~/3 := (sgnt)/ {/]t|.

VI. Let F(z) = f: f(t) dt. A necessary and sufficient condition for (a) is
F(z) — o0 as z — 0+ and for (b) is F(z) +logz — oo as z — 0+.

The general (positive) solution for the second equation is y = exp(cef®));
since y(1) < 1/e, only ¢ < —1 is permitted. Part (a) holds for F(z) — oo, while
ef(®) +log z — oo as z — 0+ is sufficient for (b).

VIL. The equation u” — 2u’ + 5u = 0 has u = ae” cos 2(z — c) as its general
solution, and from

u' = e*yu = ae®(cos 2(z — ¢) — 2sin2(z — ¢))

it follows that y = e™*(1 —2tan2(z —c)). The initial value y(0) = 7 is obtained
when ¢ = 3 arctan(n — 1)/2.

Exercises in § 3

VIIL (a) F(z,y) = sin(z+y?)+3zy = C. Since F;(0,0) = 1 and F,(0,0) =
0, for C = 0 there exists a solution of the form z = ¢(y) in U(0,0), and ¢'(0) =0
as well as ¢"(0) = —2. (Differentiate F(¢(y),y) = 0 twice.) Since F(0,y) >0
for 0 < |y| < /7, the solution remains in the half-plane z < 0 for these values
of y.

Incidentally, the inequality —y% < ¢(y) < 0 (y > 0 small) is obtained merely
by noting that sgn sin(z + 3?) = 1, since sgnzy = —1 in the second quadrant.
Moreover, from sin(z +y2) + 3zy ~ = + y2 + 3zy = 0 the approximation ¢(y) =~
—y2/(1 + 3y) follows for y close to 0.
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Let Sy denote the set km < z +y% < (k+ 1)m (k € N). Then the points
(z,y) € Sk with zy > 0 (k even) and the points (z,y) € Sk with zy < 0 (k odd)
are forbidden as well as all points with [zy| > 1/3 (sketch!). The solution curve
for y > 0 can be represented graphically in the form x = ¢(y) with ¢(vkn) = 0,
¢ — 0 for y — oo, and it oscillates around the positive y-axis. Similarly, it
oscillates around the negative z-axis for z — —oo0.

(b) F(z,y) = 32% —zy — i = C. In the form (2c) one gets ¥ = y*(y —

z)/(1 — zy?) with the additional solution y = 0.
(c) y = 2z/(C — z?) and y = 0.

Exercises in § 4

VIIL (d) z(p) = (—1_27»2 (c—i—lnp),y(p) = p*z(p) +21np (p > 0) as

well as y = z.

Exercises in § 5

XIL (a) [Tl = 3? Tl =1~ (1~ e=*)/a?, |Tll = }(1- ).

(c) One must find a sequence (f,) of functions f, € C'(J), uniformly con-
vergent in J, but with lim f,(z) = f(z) & C*(J); for instance f,(z) = |z|**+/
ifoeJe.

Exercises in § 6

IX. If the assertion is false, then there exist two points (T5,yr), (Ta,¥,) € A
for each n with

|f(x‘n1yn) - f(xn:y;z)l > nly‘n - y;r.l (*)

A subsequence of ((Zn,yn)), denoted again by ((zn,yn)), converges; thus
im(z,,¥.) = (z,9) € A. If |f| < K in A4, it follows from (*) that 2K >
n|yn — .|, and thus im(z,,y},) = (z,y). The function f(z,y) satisfies a Lips-
chitz condition with respect to y in a neighborhood U of (z,y). On the other
hand, (Z,,y») and (Zn,%,) are in U for n large, which contradicts inequality ().

Exercises in § 7

IX. (a) (@) =1~ /a3, a=1i(3-+5)=0.382.

(d) ¥(B) = 1+ /B+, B = 2(3++5) = 2.618. Since 2’ > 2z, one has
z > % hence 2/ > 2z + 2Vz2 = 4z, ie., z > 222, Similarly, one obtains
z2(z) > 2x? independent of 2. In the differential equation, z; can therefore

be replaced by max {z,2z2}, and thus one obtains the condition of Rosenblatt
with k = 1//2.

XV. ar = 1/k!. For a =0, the series reduces to ) z¥/k! = €, and this is
also the solution to the initial value problem. In a bounded interval 0 <z < a
the limit as @ — 0 is uniform for each summand (why?), hence also for each finite
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partial sum. Because of {(z — ka)+}* < a*, the remainders become uniformly
small in a.

Exercises in § 8

IV. (a) y=z +2%+ 323 — Lzt +.... For z,y € C, one has |¢®| < el*! and
| cosy| < cosh |y, as seen from the power series. For the cylinder Z : |z| < a,
ly| < b it follows that |f| < e*+acoshb =: M. For example, the choice a = 1/2,
b = 2 yields b/M = 0.57 and & = min(a,b/M) = 1/2. Setting a = 0.53 and
b = 2, one gets a = 0.53; therefore, the convergence radius of the series is > 1/2.

Remark. A better result is obtained with the aid of Theorem 8.V. In the
present case, it leads to the estimation |y(z)| < ¢(|z]) (z € C), where ¢ is the
solution of ¢'(¢) = e + tcosh @, ¢(0) = 0. Using the Lohner algorithm, which
gives exact bounds for the solution of an initial value problem, one obtains
¢(0.8228...) < 28.06. Hence the power series converges at least for |z| < 0.8228.
Details on the Lohner algorithm are described in 9.XVI.

(b) y=1+z+ 322+ 323+ 372" +.... The formulae for calculating the
coefficients immediately give 0 < b, < ax. From u(z) = 1/4/1 — 2z it follows
that a < 1/2.

Exercises in § 9

XI. y =n+z2 for n > 0, y = n — z2 for < 0 (both unique), y = cz? with
le| <1 for n = 0; hence y* = 22, y, = —z2.

XII. (a) In Exercise 8.IV.(b) it was shown that u = 1/4/1 — 2z is a lower
solution, and since u’ = u3 < z3 + 4?3, this also follows from Theorem VIII. The
ansatz w = 1/+/1 — bz (with b > 2) for an upper solution gives the following
condition:

3 L P N (0$x<l).

b 1
2v1 - bz Vv1—bz 2 b

The maximum of z2 (l;bm) is attained for bz = 2 and equals 4/(27b?). Therefore
the condition is equivalent to

b 1 /2\°> 81 -./b
-2-—1>§—\/—§(§>,01‘§\/§b (5—1>>1.
It is satisfied for b = 2.015. Hence

—— with b= 2.015,

— < Yylz) <
Vv1—2z y(=) 1-bzx

and 1/b = 0.4963 < a < 0.5.

These surprisingly good bounds were easily obtained. One gets a much more
precise estimation by the algorithm by Lohner, mentioned in Exercise XV, which
gives exact bounds for the initial value problem. One calculates the solution at
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some point ¢ where the value of the function is already large, say, y(c) € [y, 7]
One then determines for & > ¢ a lower solution v and an upper solution w, and
their asymptotes a; and ag. The latter yield ap < a < a;. In the present case
we use the ansatz

)=y, v =¥ = a1 —c=1/2y%,

w(c) =7, v =ow® = ag—c=1/207>

Here o = 1+ (a1/9)%, and thus aw® > af + w® > 2% + w3. Information

concerning the accuracy of the estimation is given by

o — o = 1 1 + 1 1— 1\ _¥-y
T T o 22\ ) T y(9¥
All calculations have to be done by interval arithmetic and intermediate results

rounded on the safe side.
One gets, e.g., for ¢ = 0.49829 04344 79713 the following reliable bounds:

y(c) € 3.400533 - 104, hence a € 0.49829 04349 121%3.

(Here ¢ = 0.49829 04344 79713 is the decimal representation of a binar}% number;
the program uses the binary system.)
(b) Obviouly, y > 1 for > 0. By use of the estimate

y<V1i+y:<y+a for y>n with a=+/14+72-9<1/2p

one obtains for 7 = 1 a lower solution v and an upper solution w from the linear
problems

v=z+v, v(0)=1and ' =z+V2-1+w, w0)=1.

The linear differential equation ' = = + a + u has the solutions u = \e®* — z —
(14 ); hence

v=2"—g—-1<y<w=(1+V2)e*—z—Vv2 for > 0.

]
For a better estimation of the order of magnitude of y one calculates the solution
y at some ¢, as in (a). For ¢ = 10 one gets

y(10) € [y, 7] = 48180.43].

The equations v/ = z+wv, v(10) = y give a lower solution v = Ae® —z — 1, where
) satisfies Ae'® — 11 = y. Analogously with w' = = + o+ w, a = 1/20, one gets
the lower solution w = X\e® — z — 21/20; again X is obtained by using the initial
condition w(10) = §. Therefore,

A= lim e %y(z) € [A N = 2.19242%3.
T—00



362 Solutions and Hints

Exercises in § 11
IX. (b) D =58.469. (c) L =205.237. (d) L = 2.371 m.

XI. (b) (i) periodic; (i) z(t) — —oo for t — =oo; (iil) z(t) — oo for
t — +oo if n > 0 and z(t) — Foo for t — +oo if n < 0.

(c) For A= B.

(h) For h(z) = z* one has V(r) = yrf with f=1- J(a+1).

@) a1=%,0-2=6%-

Exercise in § 15

VI. Y’ = AY implies (Y*)' = (Y')* = Y*A* = —Y* 4, since (AB)* = B*A".
Hence for Z(t) = Y (t)Y*(¢) one gets

Z'=Y'Y*+Y(Y") =AZ - ZA, Z(1)=
This is a homogeneous linear system of n? differential equations for n? functions
z;;(t). Since Z(t) = I is a solution and the solution is unique, Z(t) = I in J.
Exercises in § 16

IV. One has c(t) = a(t) +ib(t); for v = 22 it follows that v’ = 2at. In the

example we have ¢ = elt, therefore 2/ = eltz with the solutions z = ¢-exp(—ie't).
In particular, the solutlon with Z(0) =1is

z(t) = exp(i — ie) = e""*(cos(1 — cost) + isin(1 — cost)).
For this solution u(t) = €2*"t, hence e ™2 < v(t) < €2. If 2 is written as a column
vector (:), then X () = (z,iz) is a fundamental system with X(0) = I and
det X (t) = e?sint,

V1. Since A is periodic, Y (¢ + p) is also a solution, in fact, a fundamental
system (Corollary 15.1IT). By 15.II.(h) one has Y (¢t + p) = Y(¢)C, and t = 0
yields C = Y (0)~1Y (p). Hence Y (t+2p) = Y (t+p)C = Y (t)C?, Y (¢t+3p) =

(c) follows from a simple calculation. For the proof of (d), let ¢ # 0 be an
eigenvector of C for the eigenvalue A, thus Cc = Ac. Then it is easily seen that
the solution y(t) = Y (¢)c satisfies y(t + p) = Ay(t).

Exercises in § 20

VII. The ansatz £ = y = ¢ (the pendulums swing in phase) and the ansatz
z = —y = 9 (the pendulums swing 180° in opposite phase) lead to

m$ = —ad und my = —ayp — 2k,

from which we get four linearly independent solutions,

T\ _ (cos Bt, sinft, cosnt, sin vyt
y cosft, sinft, —cosyt, —sin~vyt
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with 8 = v/a/m, v = /(a+ 2k)/m. The solution for the pushed pendulum
reads

"sin Bt + 7' sinyt .
(:) N (g'zigt—z’sizzt) with §'=1/28, v' =1/2.

Exercises in § 22
VIII. For w = w; one gets w” = cw/z2. It follows from the ansatz w = 2°
and an additional consideration of the case o = —1/4 that
w=2% and w=2% with cjp =3+ /a+§ for a# -1,

1/2

w=2Y? and w=2"%logz for a = -

N L

For a =n(n—-1) (n=1,2,3,...) all solutions are rational functions.

Exercises in § 25

XII. 220" +(32+1)u'+u = (22u/+(z+1)u) = 0. The point z = 0 is strongly
singular; the point z = oo weakly singular. The equation 2%’ + (z+ 1)u=c =
const is to be solved. A solution of the homogeneous equation with ¢ = 0 is
u1(t) = (1/2)e'/?, and a solution of an inhomogeneous equation with ¢ =1 is

u(z) = w1 (2) / #l(z) dz.

o0

Term-by-term integration of the integrand (1/z)e™!/? = Y (—1)/(n!2"+1)
0

gives

— n-nlzt’

ug(2) = u1(2)(logz + h(z)) with h(z) = i (-1)»*+!
n=1

The functions u;, uz are a fundamental system of solutions of the original equa-
tion.
The transformation ¢ = 1/z, w(¢) = u(1/¢) leads to

Cw’ —¢(¢+1)w' +w=0, indexequation P())=(A-1)2=0.
For indices \; = Ay = 1, A1 — A2 is an integer; hence a log term may occur
o0
(24.XIII). The power-series ansatz w = Y. wgC**! leads to k?wy — kw1 = 0
0

(k > 0) with w—_; = 0. The choice wp = 1 yields wx = 1/k!. The result is the
above solution w = ¢e$ = u1(1/¢).

The second solution is obtained by the transformation v(s) = w(e®) (24.VII),
by which the differential equation becomes v” — (2 + €°)v’ + v = 0. The ansatz

2. ax + bks
v(s) = Z Lk'—ke(k"'l)’ (compare (24.19))
k=0 ’
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leads to the recursion formulae
k%b — k?be_y =0 and k%ay — k%ar—; + 2kby — kbp—y =0

(k=20,a_; =b_; =0). With by = —1 and ag = 0 one gets by = —1 for all k

1
andak=1+§+---+z. Hence

o0
Y, R T AN SN |
w(¢) = —Ce logC+l§1k!C , ae=ldo+oto

We chose by, ag such that w(1/z) = up(z); the log-free term in uy starts with
1/2%2. An independent proof that u; - h equals the above sum leads to the
following interesting relation, which can be proved by induction:

£ ()

Exercises in § 26

XVII. (a;) From the general solution u = acosz + bsinz + %e’ one easily
obtains

u——lcos:1:+6051—e in +1e=c
=73 2sinl SoET %

(ag) Using Green’s function from Exercise XVI one gets
(sin1)u(z) =sin(z — 1) [y e sin€ d€ + Sin:l:f:: €€ sin(€ — 1) d¢.
With 2 [ € sin(€ — @) d¢ = ef(sin(£ ~ a) — cos(é — a)) it follows that

2(sin1)u(z) = sin(z - 1)[e*(sinz — cosz) + 1]
—sin z[e*(sin(z — 1) — cos(z — 1)) —¢].

Since sinz - cos(z — 1) — cosz - sin(z — 1) = sin 1, we get

1, sin(z-1) esinz
U =3 2@t " Zeml
The addition theorem for the sine gives the solution in the form (a;).
(b) For v(t) = u(e?) one gets 4i — 40 = 0, whence v = e!/2 and v = te!/?,
i.e.,, u=+/T and u = \/T logz. In the construction given in V, we can choose
u) = /z log z, up = \/z log(z/2) to get c =log 2,

\/Elogg-\/:_ilogg for 1<E<z<?2,
(log 2)I'(z, &) = ¢
\/:_z:-logm-\/glogﬁ for 1<z<€(<2.
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Qwm=1lu=1-z¢c=-1

(d) Use Theorem IX.

XXIV. (b) Formula (10) with uy = z!™*, up = 1, c=a—1ory =1,
upy=1-z"%c=a-1

Exercises in § 27

XV. For 7 > o?/4 in the case o = B and for v > 0 in the case a < 8.

XVI. (a) u(1) = 0 yields u = ¢-sinvA(z — 1), and u(0) = »/(0) yields
—sin VA = VAcos VA or VA = —tanv/. For the equation —s = tans, the
set of positive solutions sg, s1,... with (n + %)71’ < $p < (n+ 1)m and sp, —
(n+ %)ﬂ' \, 0 is countable, as seen from a sketch of the tangent function. From
the equivalent fixed-point equation s = — arctan s + (n + 1)7 the number s, is
obtained by iteration [contraction principle 5.IX; note that the map s — arctans
is contracting in the interval (§,00)]. Therefore, the nth eigenvalue and the nth
eigenfunction are given by

A=82, up=sins,(z—1) (n=0,12,...).
You should convince yourself that there are no eigenvalues for A < 0.

(b) u(0) = u/(0) is satisfied by u = sin(VAz + a) with a = arctan v/}, and
the corresponding condition at z = 1 leads to the equation tan a = tan(vA+a).
Hence VA = nr, and accordingly

An =n?r? and u, =sin(nrz +a,) with a, = arctannm (n=1,2,...).

The function u; = sin(wrz + arctanw) has a zero at (0,1); thus the numbering
of the A, matches that in Theorem II. However, Ag and ug are still missing. As
is easily seen, ug = €* satisfies the boundary conditions and yields A\g = —1.
Additional eigenvalues A < 0 do not occur.

(c) For v(t) = u(e') the eigenvalue problem is ¥ + Av = 0, ©(0) = v(2x) =0
with the solution v, (t) = cos 3nt, An = jn? for n=0,1,2,.... Hence

12 _ n -
An = " and u,(z) = cos (2 log:z:) (n=0,1,2,...).
In particular, Ag = 0 and up(z) = 1.

Exercise in § 28 ’

XIV. (c) The problem of the vibrating string is
P = ¢gg for O<z<m, t>0,
¢(t,0) = ¢(t,m) =0, ¢(0,2) = f(z), ¢:(0,z) = g(x).

It has the solution

o0
é(t,z) = Y (cn cosnt + dn sinnt) sin nz

n=1

with
2 [" 2 ("
= — i de, d,=— i dz.
Cn 7"/0 f(z)sinnz dz nﬂ'/o g(z) sinnz dz
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d’Alembert’s equation 50
d’Alembert’s reduction method
167, 200
Amann 316
amplitude theorem for second order
equations 277
approximate solvability 80
Arenstorf 6
argument, argument function
270, 335
Ascoli-Arzela theorem 74
attractor 324
global 324
autonomous system 41, 110, 314, 339

Banach 61

Banach space 57, 350

Bernoulli, Jacob 29

Bernoulli, Johann 87, 130

Bernoulli’s equation 29

Bessaga vi

Bessel functions 241, 302

Bessel’s equation 238, 302

Bessel's inequality 289

blow-up problem 285

Bony 119

Borel covering theorem 355

boundary condition of first, second, and

third kind 245

boundary condition, periodic 245, 255

boundary value problem 245
for singular equations 284
general linear 255
semihomogeneous 252, 253
with parameter 259
nonlinear 253, 262, 264
for elliptic equations 282

Brezis 119

Brouwer 345

Bulirsch 6

C-solution 121
Carathéodory 121
Carathéodory condition 121
Carathéodory, solution in the sense of
boundary value problem 266
comparijson theorem 122
for quasimonotone systems 175
eigenvalue problem 284
estimation theorem 124
initial value problem 121, 122
maximal solutions 123
linear system 173, 174
strong minimum principle 267
catenary 129-131
Cauchy convergence criterion 56
Cauchy integral formula 347
Cauchy integral theorem 84, 347
Cauchy sequence 56
center 187
Cesari 212, 318
Cetaev 325
characteristic exponent 195
characteristic multiplier 195
characteristic polynomial 176, 180, 204
Clairaut’s equation 49
Collatz 212
compact set 80, 355
comparison theorem
initial value problem 90, 95-97
nonlinear differential operators 140
of M. Miiller 114
quasimonotone systems 112
second order equations 139
singular 73
competing species 119
completeness of a2 normed space 56
complex linear space 54
component of an open set 334
Conti 328
connectedness 334



simple 84, 337
continuous dependence of solutions
141, 145, 146, 148
continuity of operators 57
contraction principle 59
contractive mapping 59
convergence in normed spaces 56
convex function 343
convex hull 355
convex set 81, 355
Crandall 119
critical point 111, 388
hyperbolic 315
curve 333

damped oscillation 206
defect 60, 90, 143
defect inequality 60
definiteness 54
dense set 74
determinant 159
derivative of 161
differential equation
autonomous 41, 110, 314
elliptic 71, 72, 79, 262, 281-283
exact 37
for complex-valued functions 142
for family of curves 36
homogeneous 21
hyperbolic 301
implicit 1, 46
of nth order 125
of Carathéodory type 121, 266,
284
parabolic 299, 302
singular second order 70, 73
with separated variables
16-21, 125
with delay 82
differential inequalities
See comparison theorem; estima-
tion theorem; maximal solu-
tions; supersolutions
direction field 9, 10, 106
Dini derivative 89, 90, 142, 342
distance function 54
domain 334
simply connected 337
domain of attraction 324, 328
Drazin 316

Index 373

Driver’s equation 103

eigenfunction 268
eigenspace 293
eigenvalue
of a matrix 175
algebraic multiplicity 183
geometric multiplicity 183
semisimple 183
of a Sturm-Liouville problem 268
asymptotic behavior 275
eigenvalue problem
for self-adjoint operators 291
of Sturm-Liouville 268, 294
comparison theorem 276
existence theorem 269
expansion theorem 269
generalized 284, 298
eigenvector 103
elliptic equations, radial solutions
boundary value problem 282
eigenvalue problem 282
expansion theorem 298
initial value problem 70, 72, 79
energy function 132, 135, 329
envelope 49
equicontinuity 74, 81
equilibrium point 111
estimation theorem
for boundary value problems 265
for complex equations 89
for linear systems 162, 215
with L'-estimate 173
for systems 143
with Lipschitz condition 145
Fuclidean norm 55
Fuler multiplier 40
Euler system 218
Euler—Cauchy polygon method 78
FEuler’s equation 208
existence theorem, initial value
problem
complex equations 84, 110, 127
first order equations 62, 68, 77
linear equations 28, 199
linear systems 162
holomorphic 213
maximal solution 93, 123
nth order equations 127
nonlinear systems 108, 110
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of Carathéodory type 121, 122

of Peano 73, 83, 110

radial Laplacian 72, 79

radial p-Laplacian 141
exponential function for matrices

191-193, 218220

extension of solutions 67

up to the boundary 68, 73

family of curves 10, 35
first integral 41
FitzHugh-Nagumo equations 115
fixed point 59
fixed point theorem
for approximately solvable
operators 80
of Banach 59
of Brouwer 345
of Schauder 81, 356
Floquet theory 195
forced oscillation 208
Fourier coefficient 270, 288
Fourier series 270, 288, 293, 294, 298
Fredholm integral equation 295
free fall 2, 137
Fuchsian type
linear second order equations 241
linear systems 224
functional 57
fundamental matrix
See fundamental system
fundamental system 165
constant coefficients
176, 177, 182
holomorphic 215
isolated singularity 219
nth order equations 199, 204
weakly singular point 222, 233
forn=2 235
fundamental sequence 56
fundamental solution 249

Galileo 131, 132, 135

general solution 2

gradient system 328

Grauert vii

Green’s function 251, 256, 259
Green’s matrix 256

Green’s operator 256
Grobman 315

Gronwall, lemma of 310, 317

Hadamard 142

Hahn 318

Hale 316

Hamiltonian function 329

Hamiltonian system 329

harmonic oscillator 133

Harris vii

Hartman 119, 315, 316

Herzog 103

heat equation 300

Hilbert norm 309, 352

Hilbert space 287

Hill’'s equation 211

Hirsch, theorem of viii, 112

Holmes vii

holomorphic 55, 84, 348

homeomorphic 347

Hopf 262

Huygens 131

hypergeometric equation 242
confluent 243

hypergeometric function 243

identity matrix 160
increasing function in R™ 112
indicial equation 237
initial condition 3, 10, 106
initial value problem
complex equations 85, 213
first order equations 10, 355
nth order equations 125
of Carathéodory type 121
singular second order equations
70, 73, 79
systems 105, 153
initial values
continuous dependence on
143, 148
differentiability 154, 157
inner product 286
inner product space 287
instability 306
of linear systems 188
instability theorem 312
Cetaev-Krasovski 325
Lyapunov 320
integral curve 2
integrating factor 39



integration by differentiation 51
integration operator 345
invariant interval 115
invariant set 117, 118, 322
isocline 32
iteration 59

approximate 150

Jacobi matrix 151

Jordan 316

Jordan block 180

Jordan curve theorem 337
Jordan normal form 180

Kamke 49, 113, 276, 297
Kogak 316

Krasovsky 325
Kummer’s function 243

Lagrange identity 247
. Lagrange method of variation of
constants 171, 202
Laplace operator, Laplacian 71
LaSalle 325
Lazer 134
Legendre equation 243
Legendre functions 243
Legendre polynomials 243, 244
Leighton 328
Lemmert 103
level curve 338
level set 42, 338
Liénard equation 328
limit point 322
limit set 322
line element 9, 46
linear equations of first order 27
initial value problem 28
linear equations of second order
201, 206
amplitude theorem 277

boundary value problems 245

comparison theorem 278
constant coefficients 206
holomorphic coefficients 236
inhomogeneous 207

of Fuchsian type 241, 242
oscillation 276, 278, 281
periodic coefficients 210
reduction method 200

Index 375

regular and singular points 236
relation to Riccati equation 33

separation theorem
of Sturm 272
of Sturm—Picone 273

variation of constants 171, 202

linear nth order equation 198
analytic coefficients 244
constant coefficients 204
inhomogeneous 202

linear space 53

linear system of differential equations

161
adjoint system 169
analytic coefficients 213
complex coefficients 163
constant coefficients 175
bhomogeneous 164

inhomogeneous 164, 170, 193, 198

isolated singularity 216

of Carathéodory type 173, 174

of Fuchsian type 224
periodic coefficients 195

real system for n =2 184-188

weakly singular point 222
linearization 314

theorem of Grobman-Hartman 315

linearly dependent 165
linearly independent 165
Liouville 247

Lipschitz condition 58, 62, 107, 145

local 66
Lipschitz constant 58, 62
local solvability 66
logarithm, complex 216
logistic equation 26

generalized 33

stationary 265
Lohner 92, 102
Lorenz equations 330
Lotka 42
Lotka-Volterra model 42
lower solution

See subsolution
Lyapunov 212, 318
Lyapunov function 319

Mathieu’s equation 212
matrix 159-161
essentially positive 112
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diagonalizable 183
semisimple 183

matrix function 190, 351

maximal and minimal solution 93, 95
for quasimonotone systems 113
in the Carathéodory sense 123

maximum norm 55
weighted 55, 64

maximum and minimum principles 260
strong 260, 267

McKenna 133

McNabb 264

Mie 73

Morgenstern vii

Miiller 113

multiplier 39

Neumann series 352
Ni 72
nilpotent 351
norm 54
in Hilbert space 286
monotone 350
of a linear operator 58, 290
norms
equivalent 57, 106, 350
compatible 160
normed space 54
node 186

Olech 147
operator 57
continuous 57
compact 80
Hermitian 290
linear 57
linear bounded 290, 350
linear compact 290
self-adjoint 290
operator norm 58, 164, 350
Opial 136
orbit 41
orientation 337
orthonormal system 288
orthonormal basis 289
oscillation in second order equations
linear equations 276, 278, 281
nonlinear equations 131, 136, 321
period of 135
with friction 206, 322, 326

oscillator, harmonic 132
Ostrowski 149

parallelogram identity 287
parameters, dependence of solutions on
analytic 149
continuous 148
- differentiable 150, 153, 155
parametric representation of curves 37
47
path 84, 333
closed 333
Peano 73
pendulum
coupled 209
linear 133
mathematical 133
Perron 91
phase plane, phase space 41, 111
phase portrait, phase diagram 41
Picone 273
Poincaré map 306
polygon method 78
polar coordinates 270, 334
population growth 24
potential function 38, 39
power function
complex 216
for matrices 218
power series expansion 87, 226
power series for matrices 190, 194, 351
predator-prey model 42
generalized 44
pre-Hilbert space 287
Priifer transform 270
Pythagorean theorem 287

quasimonotonicity 112
quasinilpotent 351, 354

real vector space 54

Redheffer, I. viii

Redheffer, R. wiii, 119

reduction method of d’Alembert 167
200

regular solution, regular point 222

Reissig 328

Remmert vii

resonance 208, 210

Riccati’s equation 31, 33, 87, 285



rubber band 133

saddle point 187 :
Sansone 328
satellite orbit 5
Sauvage 223
scalar product
See inner product
Schauder, fixed point theorem of 81,
356
Schwarz inequality 287
Scorza Dragoni 262
self-adjoint 246, 290
semiorbit 322
separation of variables 16, 125
separation of zeros
theorem of Sturm 272
theorem of Sturm—-Picone 273
separatrix 98-104
computation of 102
Serrin’s sweeping principle 264
Sibuya vii
singular point, line element, and
solution 46
singularities in complex equations
of second order 236
of higher order 244
singularities in complex linear systems
216, 219
strong and weak 222
at infinity 223
Smith 316
solution 1, 9, 105
approaching the boundary 68
formal 226, 230
general 2
global 99, 102
nonextendable 68
of Carathéodory type 121
periodic 111, 196
radial (rotationally symmetric)
See elliptic equations, radial
solutions
stationary 43
solution matrix 165
Sparrow 331
spectral radius 351, 352
spectrum of a matrix 176, 352
square-integrable function 288
stability

Index 377

asymptotic 306
exponential 318
in the sense of Lyapunov 306
of autonomous systems 314
of linear systems 188
with constant coefficients 189,
308
with periodic coefficients 197,
212
stability theorem 311, 321
of LaSalle 325
of Lyapunov 319
stationary point 111
Stoer 6
strongly singular point 222, 236
Sturm 247, 273
Sturm-Liouville eigenvalue problem 268,
294
expansion theorem 269, 298
with a singularity 284, 298
with Carathéodory assumptions 284
Sturmian boundary value problem 245,
246
Sturm separation theorem 272
subsolution and supersolution
boundary value problems 263
Carathéodory type equations and
systems 122, 175
first order equations 91, 97
quasimonotone systems 113
second order equations 139
successive approximation 59
divergence of 79
Swanson 283

tangent conditions 117
Titchmarsh 276, 297
trace of a matrix 166
total differential 38
trajectory 41, 111
triangle inequality 54

unitary space 55
uniqueness, local 16, 66
uniqueness condition of
Bompiani, Kamke, Krasnosel’skii—
Krein, Nagumo, and Osgood
146
Rosenblatt 70
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uniqueness theorem, initial value
problem
Carathéodory type equations 121,
122
complex equation 85, 110
first order equation 62, 68
nth order equation 127
linear equation 28, 199
linear system 162, 171
nonlinear system 108, 144
uniqueness theorem, boundary value
problem
linear equations 248, 256, 282,
284
nonlinear equations 254, 266, 282,
284

van der Pol’s equation 327
variation of constants 171, 202

vector space 53

Verhulst 25

Volterra integral equation 69, 79, 148
vortex 188

Walter vii, viii, 83, 113, 119, 134, 147,
262, 267

weakly singular point 222

series expansion 225, 229, 237
Weinberg vii
Wiggins 316
Wronskian determinant 166, 200
well-posed problem 141, 146
winding number 328

zeros, distribution of 269, 278
Zorn’s lemma 82



Notation

Sets. We denote by N = {1,2,3,...} the set of positive integers, by Z the
set of all integers, by R the set of real numbers, and by C the set of complex
numbers. The symbol R" stands for the set of all n-tuples of real numbers
(n-dimensional Euclidean space) and C" for the set of all n-tuples of complex
numbers (n-dimensional complex or unitary space); cf. 5.III.(a), (b).

The boundary of a set A is denoted by OA, the interior by A°, and the
closure by A = 0AU A°.

Intervals. As usual, intervals of real numbers are denoted by {a, b}, (a,b),
[a,b), (a,b]. An interval without further specification can be open, closed, half-
open, bounded, or unbounded. Thus R and [a,00) = {z € R : > a} are also
intervals.

Functions. The graph of a function f : D — FE is denoted by graph f.
Thus graph f is the set of all pairs (z, f(z)) € D x Ewithz € D. f AC D,
then g = f|A is the restriction of f to A. Thus Domg = A and g(z) = f(z) for
z € A. Any function h : B — E with B D D and h|D = f is called an extension
of f. The image of A under f is

f(A):={y € E: thereis anz € A with y = f(z)}.

Classes of Functions. For M C R" the class of continuous functions on
M is denoted by C(M). Depending on context, the functions in C(M) are
real-valued, complex-valued, or vector-valued. The symbol C*(J) represents
the class of functions that are k-times differentiable on the interval J with the
convention that C°(J) = C(J). If G is an open set in R™, then C*(G) is the
class of functions that together with all partial derivatives of order < k are
continuous in G. We set C°(G) = C(G). Further classes are listed under the
abbreviations below; they are explained in the text.

Trajectories. Some trajectories are marked with dots that correspond to
equidistant ¢-values; cf. 3.V, VL

Abbreviations
AC(J) (absolutely continuous on J) 121
B, - (ball in R™ or in a Banach space)
C*(G) (continuously differentiable in G) 153
D_, D~ (Dini derivative) 89, 342

379



380 Notation

A (Laplace operator) 71

Ay (p-Laplacian) 141

dist (x, A) (distance from the point x to the set A) 117, 323
dist (4,B)  (distance between the sets A and B) 323

e; (unit vector) 160

Ext(C) (exterior of the closed curve C) 337
(H) 16

H(G) (holomorphic in G) 84, 213, 348
Hy(G) (holomorphic and bounded in G) 55
H; 225

H? 230

H, (Hilbert space with weighted norm) 296
I (identity matrix) 160 '
I 70

Int(C) (interior of the closed curve C) 337
K, (disk |z| <) 222

K? (punctured disk 0 < |2] <7) 217

K- (disk minus a radius) 221

Lo 70

L(J) (integrable over J) 121

L2(J) (quadratically integrable over J)
Lioe(J) (locally integrable in J)

P, 229

R, (half-plane Rez < a) 217

S (class of functions) 279

(S) (assumption for Sturmian theory) 246
(SL) (assumption for Sturm-Liouville theory) 269
o(A) (spectrum of the matrix A) 176

tr A (trace of the matrix A) 166

) (uniqueness condition) 67, 146

Ix|e (Euclidean norm) 55, 106

- (weighted norm) 296

(Z)m 239

() (inner product) 286

() (inner product) 295
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