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Chapter 1 Numerical Optimization

This Chapter comes from《Numerical Optimization》, Jorge Nocedal; Stephen J. Wright.

1.1 Introduction
First, we need understand the process of modeling and some crucial concepts.

1. objective
2. variable
3. constrained
4. optimality conditions

So the modeling means that we need to maximize or minimize the objective function.
Additionally, we need to classify the modeling problems in many ways:

1. Linear or nonlinear?
2. discrete or continuous?
3. constrained or unconstrained?
4. Global or local?
5. stochastic or deterministic?
6. convexity

Finally, we need to think about the robustness, efficiency and accuracy, although sometimes they might
contradict to each other.

1.2 Fundamentals of Unconstrained Optimization
Fortunately, our algorithms get to choose these points, and they try to do so in a way that identifies

a solution reliably and without using too much computer time or storage. Often, the information
about f does not come cheaply, so we usually prefer algorithms that do not call for this information
unnecessarily.

1.2.1 What Is A Solution?
First, some concepts of local minimum and global minimum.
Then, here are some theorems: P14-P17. These results, which are based on elementary calculus,

provide the foundations for unconstrained optimization algorithms.
In the end, there exist interesting problems that own bad regularity.

1.2.2 Algorithm Overview



Chapter 2 Computer Graphics Course in USTC

This chapter comes from Computer Graphics Course in USTC, 2024, taught by Ligang Liu.

The homepage is listed: http://staff.ustc.edu.cn/~lgliu/Courses/ComputerGraphics_2024_
spring-summer/default.htm

2.1 Image Warping

2.1.1 Problem Statement
We need to implement image warping. We have implemented interactive mouse dragging, allowing
users to designate certain points as fixed and move others to desired positions. These selected points
are collectively referred to as control points(pi, qi)，pi, qi ∈ R2，i = 1, . . . , n. Taking these control
points as input, our goal is to output the deformed entire image. Essentially, the problem entails
determining a distortion function f given n interpolation conditions:

f(pi) = qi, i = 1, . . . , n

We then apply f to all points in the image to determine the positions of the deformed points. Finally,
we assign the pixel values of the points before distortion to the corresponding points after distortion,
achieving the rendering of the deformed image.

2.1.2 Propose Algorithms
The essence of this problem lies in finding the interpolation function. Here, we present three different
approaches:

1. IDW: Inverse distance-weighted interpolation methods;
2. RBF: Radial basis functions interpolation method;
3. MLS: Moving least squares interpolation method.

I need to clarify that the Moving Least Squares (MLS) method is an assignment in a mathematical
experiment course. Here, it has been implemented once again using C++.

2.1.2.1 IDW
We need to define some local interpolation functions f i(p) : R2 → R2, which satisfy the following
conditions:

f i(pi) = qi.

To be more specific,
f i(p) = qi +Di(p− qi). (2.1.1)

http://staff.ustc.edu.cn/~lgliu/Courses/ComputerGraphics_2024_spring-summer/default.htm
http://staff.ustc.edu.cn/~lgliu/Courses/ComputerGraphics_2024_spring-summer/default.htm
https://ieeexplore.ieee.org/document/365004
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.1410035
https://dl.acm.org/doi/abs/10.1145/1179352.1141920


2.1 Image Warping

In equation (2.1.1), Di : R2 → R2, which satisfies that Di(0) = 0.

Choose Di to be a linear transformation. We can define it in a more accurate way. Define the energy
function:

Ei(Di) =
n∑

j=1,j ̸=i

σi(pj)∥qi +Di(pj − pi)− qj∥2. (2.1.2)

Let the Di minimize the energy function.
∂Ei

∂Di

=
n∑

j=1,j ̸=i

σi(pj)[qi +Di(pj − pi)− qj] · (pj − pi)
⊤ = 0. (2.1.3)

So Di can be calculated in the following way.

[
n∑

j=1,j ̸=i

σi(pj)(qj − qi)(pj − pi)
⊤] · [

n∑
j=1,j ̸=i

σi(pj)(pj − pi)(pj − pi)
⊤]−1 (2.1.4)

We use the Eigen library to compute the inverse of a matrix.

The complete interpolation function is

f(x) =
n∑

i=1

ωi(x)f i(x) (2.1.5)

ωi : R2 → R is defined:
ωi(x) =

σi(x)∑n
j=1 σj(p)

. (2.1.6)

σi(x) =
1

∥x− xi∥µ
(2.1.7)

µ is a constant.

2.1.2.2 RBF
Assuming the interpolation function f is in the form of a combination of radial basis functions as
follows:

f(p) =
n∑

i=1

αiR(∥p− pi∥) +Ap+ b. (2.1.8)

In equation (2.1.8),
1. R(∥p−pi∥) consists of n radial basis functions, such as the option R(d) = (d2+ r2)µ/2, where

the coefficients αi ∈ R2 are to be determined;
2. A ∈ R2×2 and b ∈ R2 are the to-be-determined affine parts.

The mapping has 2(n+ 3) degrees of freedom, and the interpolation conditions are:

f(pj) =
n∑

i=1

αiR(∥pj − pi∥) + Apj + b = qj, j = 1, . . . , n. (2.1.9)

3



2.1 Image Warping

Provided are 2n constraints. Optional additional constraints include:(
p1 · · · pn

1 · · · 1

)
3×n


α⊤

1

...

α⊤
n


n×2

= 03×2. (2.1.10)

Based on the above constraints, we can formulate the following matrix equation to solve for the pa-
rameters to be determined:

R(∥p1 − p1∥) · · · R(∥p1 − pn∥) 0 · · · 0 p1[0] p1[1] 0 0 1 0

R(∥p2 − p1∥) · · · R(∥p2 − pn∥) 0 · · · 0 p2[0] p2[1] 0 0 1 0

...
...

...
...

...
...

...
...

...
...

...
...

R(∥pn − p1∥) · · · R(∥pn − pn∥) 0 · · · 0 pn[0] pn[1] 0 0 1 0

0 · · · 0 R(∥p1 − p1∥) · · · R(∥p1 − pn∥) 0 0 p1[0] p1[1] 0 1

0 · · · 0 R(∥p2 − p1∥) · · · R(∥p2 − pn∥) 0 0 p2[0] p2[1] 0 1

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 R(∥pn − p1∥) · · · R(∥pn − pn∥) 0 0 pn[0] pn[1] 0 1

p1[0] · · · pn[0] 0 0 · · · · · · · · · · · · · · · 0 0

p1[1] · · · pn[1] 0 0 · · · · · · · · · · · · · · · 0 0

1 · · · 1 0 0 · · · · · · · · · · · · · · · 0 0

0 · · · 0 p1[0] · · · pn[0] 0 · · · · · · · · · · · · 0

0 · · · 0 p1[1] · · · pn[1] 0 · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1 0 · · · · · · · · · · · · 0



·



α1[0]

...

αn[0]

α1[1]

...

αn[1]

a11

a12

a21

a22

b1
b2



=



q1[0]

...

qn[0]

q1[1]

...

qn[1]

0

...

0



(2.1.11)

In equation (2.1.11),

A =

(
a11 a12

a21 a22

)
, b =

(
b1

b2

)
,

pi[0] represents the x-coordinate of point pi, pi[1] represents the y-coordinate of point pi, as well as
qi[0], qi[1], αi[0], αi[1].

We solve the expression (2.1.11) using the Eigen library and return the solution vector, which contains
the coefficients to be determined.

2.1.2.3 MLS
In this project, I just finished the rigid transformation, but complete processes mentioned in the paper
are listed.

The known deformation points are denoted as p, and their images are denoted as q, stored in n × 2

matrices p and q respectively, where n represents the number of fixed points. Based on the given p

and q. We define:
lv(x) = xM + T . (2.1.12)

The transformation needs to minimize the following energy function:

E =
∑
i

ωi|lv(pi)− qi|2. (2.1.13)

attains its minimum value, where ωi represents the weight vector, a 1× n vector defined as:

ωi =
1

|pi − v|2α
. (2.1.14)

From here, it can be seen that this weight vector depends on v and p. Substituting the assumption

4



2.1 Image Warping

equation (2.1.12) into the energy function (2.1.13), we can obtain:

E =
∑
i

wi |piM + T − qi|
2 . (2.1.15)

Taking the derivative of Equation (2.1.15) with respect to T , and since the energy function attains an
extremum, we have:

∂E

∂T
= 2

∑
i

ωi |piM + T − qi| = 0. (2.1.16)

Then
T = q∗ − p∗M . (2.1.17)

We define q∗ and p∗：

p∗ =

∑
i wipi∑
i wi

.

q∗ =

∑
i wiqi∑
i wi

.

(2.1.18)

We can find that p∗ and q∗ are only up to ω, p and q. Then

lv(x) = (x− p∗)M + q∗. (2.1.19)

At this point, we can rewrite the energy function as:

E =
∑
i

wi |p̂iM − q̂i|
2 . (2.1.20)

p̂i and q̂i are defined：
p̂i = pi − p∗.

q̂i = qi − q∗.
(2.1.21)

Therefore, our core task is transformed into solving the matrix M , and the computation of different
transformation matrices M varies slightly. Later, for the function lv(x). let’s define:

f(v) = lv(v). (2.1.22)

2.1.2.3.1 Affine Transformation

E =
∑
i

wi (p̂iM − q̂i) (p̂iM − q̂i)
⊤ =

∑
i

wi

(
p̂iMM⊤p̂i

⊤ − q̂iM
⊤p̂i

⊤ − p̂iMq̂i
⊤ + q̂q̂i

⊤) .
(2.1.23)

Taking the derivative with respect to M on both sides, we have:
∂E

∂M
= 2

∑
i

ωi(p̂i
⊤p̂iM − p̂i

⊤q̂i) = 0. (2.1.24)

Then
M = (

∑
i

p̂i
⊤ωip̂i)

−1 · (
∑
j

ωjp̂j
⊤q̂j). (2.1.25)

fa(v) = (v − p∗)(
∑
i

p̂i
⊤ωip̂i)

−1 · (
∑
j

ωjp̂j
⊤q̂j) + q∗. (2.1.26)

Note that if interactivity is required, i.e., users can achieve real-time animation effects by changing the

5



2.1 Image Warping

position of q, for ease of computation, we can rearrange (2.1.26) as follows:

fa(v) =
∑
j

Ajq̂j + q∗. (2.1.27)

Aj is defined:
Aj = (v − p∗)(

∑
i

p̂i
⊤ωip̂i)

−1 · (ωjp̂j
⊤). (2.1.28)

Note that the definition of Aj is independent of the value of q, so it only needs to be computed once.

2.1.2.3.2 Similar Transformation However, affine transformations may result in uneven distribu-
tion or discontinuities, which are not typically observed in real-life objects. On the other hand, simi-
larity transformations only involve translation, rotation, and uniform scaling. Therefore, we examine
the mapping function under similarity transformations, where the core remains to find the matrix A.

Similarity transformations require the matrix to possess the property (M⊤M = λ2I). If we denote:

M = (M 1 M 2).

Then, M⊤
1 M 1 = M⊤

2 M 2 = λ2 and M⊤
1 M 2 = 0. They mean that

M 2 = M⊥
1 . (2.1.29)

We can change the form of energy function:

E =
∑
i

ωi|

(
p̂i

−p̂i
⊥

)
M 1 − q̂i

⊤|2. (2.1.30)

∂E

∂M 1

= 2
∑
i

ωi

(
p̂i

−p̂i
⊥

)
(
(
p̂i

⊤ −(p̂i
⊥)⊤
)
M 1 − q̂i

⊤) = 0. (2.1.31)

We can get the value of M 1 :

M 1 =
1

µs

∑
i

ωi

(
p̂i

−p̂i
⊥

)
q̂i

⊤. (2.1.32)

µs =
∑
i

ωip̂ip̂i
⊤. (2.1.33)

M =
1

µs

∑
i

ωi

(
p̂i

−p̂i
⊥

)(
q̂i

⊤ −(q̂i
⊥)⊤
)

(2.1.34)

Similarly, to enhance user interactivity, we can improve the expression as follows:

f s(v) =
∑
i

q̂i(
1

µs

Ai) + q∗. (2.1.35)

Ai = ωi

(
p̂i

−p̂i
⊥

)(
v − p∗

−(v − p∗)⊥

)⊤

. (2.1.36)

We can find that Ai is only up to p and v.

Similarity transformations have a good property of preserving angles, thus resulting in more ideal

6



2.2 Poisson Editing

outcomes compared to affine transformations. However, they may lead to the enlargement of the range
for parts of points that are distant from the transformation points.

2.1.2.3.3 Rigid Transformation In previous work, it was found that achieving more realistic de-
formations requires approaching rigid transformations as closely as possible. The author proposed
Lemma 2.1 and provided the following concise expression:

f r(v) =
∑
i

q̂iAi. (2.1.37)

f r(v) = |v − p∗| fr(v)
|fr(v)|

+ q∗. (2.1.38)

f r(v) is the sought-after rigid transformation function. Compared to similarity transformations, rigid
transformations utilize normalization, thus leading to increased computational complexity.

2.2 Poisson Editing

2.2.1 Problem Statement
Image editing tasks concern either global changes (color/intensity corrections, filters, deformations)
or local changes confined to a selection. Here we are interested in achieving local changes, ones that
are restricted to a region manually selected, in a seamless and effortless manner. The extent of the
changes ranges from slight distortions to complete replacement by novel content. Classic tools to
achieve that include image filters confined to a selection, for slight changes, and interactive cut-and-
paste with cloning tools for complete replacements. With these classic tools, changes in the selected
regions result in visible seams, which can be only partly hidden, subsequently, by feathering along the
border of the selected region.

We propose here a generic machinery from which different tools for seamless editing and cloning
of a selection region can be derived. The mathematical tool at the heart of the approach is the Pois-
son partial differential equation with Dirichlet boundary conditions which specifies the Laplacian of
an unknown function over the domain of interest, along with the unknown function values over the
boundary of the domain. The motivation is twofold.

The essence of this problem is essentially an interpolation task: inserting pixels from the source im-
age into the selected region of the target image to achieve a seamless effect. Our requirement is to
minimize gradient changes, which transforms the problem into a Poisson equation problem with given
boundaries. After discretization, it can be converted into a sparse matrix solving problem. Once the
pixel values are obtained, they are drawn onto the target image.

7



2.3 Tutte Parameterization

2.2.2 Propose Algorithms
Let S be a closed subset of R2. It represents the image definition domain. Let Ω be a be a closed
subset of S with boundary ∂Ω. Let f ∗ be a known scalar function defined over S minus the interior
of Ω and let f be an unknown scalar function defined over the interior of Ω. Finally, let v be a vector
field defined over Ω.

The simplest interpolant f of f ∗ over Ω is the membrane interpolant defined as the solution of the
minimization problem:

min
f

¨
Ω

|∇f |2 with f |∂Ω = f ∗|∂Ω. (2.2.1)

The minimizer must satisfy the associated Euler-Lagrange equation.

∆f = 0 over Ω with f |∂Ω = f ∗|∂Ω. (2.2.2)

According to this principle, we give the discretization of equations. For all p ∈ Ω,

|Np|fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np∩∂Ω

f ∗
q +

∑
q∈Np

vpq. (2.2.3)

In equation 2.2.3, Np represents a four-connected neighbor. We realize too different methods, they are
only different from the value of vpq. The definitions of vpq are listed:

1. Seamless:
vpq = gp − gq;

2. mixed:

vpq =

{
f ∗
p − f ∗

q if |f ∗
p − f ∗

q | > |gp − gq|,
gp − gq otherwise,

In this way, we can construct the sparse matrix equation according to 2.2.3.

2.3 Tutte Parameterization

2.3.1 Problem Statement
First, read the Framework3D framework configuration instructions and configure the framework. Cur-
rently, there is no need to delve into the implementation of the framework. Simply refer to the docu-
mentation and examples to understand how to write a single node .cpp file.

Second, Read about mesh data structures to learn the basic representation of meshes, as well as the
OpenMesh library we will use. An example using the homework framework and half-edge structure
to compute and visualize curvature of triangular meshes is provided. Besides, Learn how to traverse
vertices, faces, edges, and access their neighborhoods using the half-edge structure. The structure is
shown in Figure 2.1.

Then, refer to papers and assignment requirements to implement the Tutte surface parameterization
algorithm. We can add node implementations for the algorithm in the specified directory and test the

8



2.3 Tutte Parameterization

Figure 2.1: half-edge structure

correctness of the algorithm in the framework, as well as the impact of different variable selections on
experimental results. We can complete this assignment following the steps below:

1. Implement the establishment and solution of the Laplace equation on the mesh (with uniform
weights). The boundary conditions are still chosen as the original spatial point positions, and
you can obtain a“minimal surface” with fixed boundaries by solving it, completing the minimal
surface node;

2. Under the same coefficients, modify the boundary conditions to map the mesh boundary to the
boundary of a convex area on the plane (square, circle), completing the boundary mapping node;

3. Solve for (uniformly weighted) Tutte parameterization (connecting the above two nodes!), then
use the texture mapping node to visualize parameter coordinates;

4. Try and compare different weight selections, such as Cotangent weights (to be implemented)
and shape-preserving weights (Floater weights).

2.3.2 Propose Algorithms
First, we need to define vertex differentials：

δi = vi −
∑

j∈N(i)

wjvj , (2.3.1)

In equation 2.3.1, N(i) represents the 1-neighborhood of i. wi represents the weight of i. We have
two definitions of wi:

1. Uniform weights:: wj = 1

2. Cotangent weights: wj = cotαij + cot βij , the definitions of αij and βij are shown in Figure
2.2;

However, we need to notice that the coefficients should be normalized:

wj =
wj∑
k

wk

. (2.3.2)

Then, we can calculate the minimal surface by constructing linear equations. Let δi = 0, we know
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Figure 2.2: αij and βij

that
vi −

∑
j∈N(i)

wjvj = 0. (2.3.3)

The equation 2.3.3 gives the restriction to all interior points, to simplify the construction of linear
equation, the objective of establishing the equation can be modified to include all types of points. For
the boundary points, the restriction is

vi = vi. (2.3.4)

The right side of equation is given. This way of construction linear equations is much easier. It also
does not affect computational efficiency, as boundary points are always sparse compared to the overall
set of points.

Then, we can also realize the boundary mapping. First, we need to find the boundary. I write
halfedge_handle_start to find handle on the boundary, and use this handle to find all the bound-
ary points.

Two different kinds of boundaries are provided.
1. Circle in [0,1]×[0,1];
2. Square [0,1]×[0,1].

The most important problem to be solved is to determine distribution of boundary points. A simple
approach is to evenly distribute boundary points along the circumference, but it’s obviously not re-
alistic. My approach is to define initial points and then calculate the arc length distance from each
point to the starting point in sequence, storing it in bp_distance, and then distribute them according
to the proportion of this distance to the total arc length. To be more specific, the relationship between
coordinates and distances is as follows:

1. Circle: the starting point is (1,1
2
).

x =
1

2
+

1

2
cos(

dis

sum
∗ 2π), y =

1

2
+

1

2
sin(

dis

sum
∗ 2π) (2.3.5)
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2. Square: the starting point is (0,0).

x =


4 ∗ dis

sum
, dis

sum
∈ [0, 1

4
)

1, dis
sum

∈ [1
4
, 1
2
)

3− 4 ∗ dis
sum

, dis
sum

∈ [1
2
, 3
4
)

0. dis
sum

∈ [3
4
, 1)

y =


0, dis

sum
∈ [0, 1

4
)

4 ∗ dis
sum

− 1, dis
sum

∈ [1
4
, 1
2
)

1, dis
sum

∈ [1
2
, 3
4
)

4− 4 ∗ dis
sum

. dis
sum

∈ [3
4
, 1)

(2.3.6)

We can assume the boundary points are all in x-y plain, so the z-coordinates are zero. We just use
the new boundary coordinates to replace the right side of equation 2.3.4, then get the construction of
boundary mapping.

Finally, we use SparseLU to solve the equation and set_point function to reconstruct the 3D object.

2.3.3 Programming

2.3.3.1 Halfedge Structure
It is shown in Figure 2.1. Then OpenMesh has provided us many functions to read the information
from the mesh structure.

for (const auto& vertex_handle : halfedge_mesh->vertices())

This loop can obtain vertex-related information.

for (const auto& halfedge_handle : vertex_handle.outgoing_halfedges())

This loop can obtain half-edge information related to a vertex. Some functions used are shown as
follows:

1. halfedge_handle.to(): use the halfedge to find the end point;
2. halfedge_handle.prev(): find the last handle;
3. halfedge_handle.opp(): find the opposite halfedge handle;
4. is_boundary(): judge whether the halfedge and vertex is on the boundary;
5. .idx(): find the index of vertex.

2.3.3.2 Node programming
Another interesting task is completing node programming. Node programming refers to the process of
writing code or scripts that operate on individual nodes within a system or network. In the context of
software development or computer science, nodes typically represent individual elements or entities
within a larger system, such as data structures, computational units, or network devices.

Benefits of Node Programming:
1. Modularity: Node programming allows for the development of modular and scalable systems,

where individual nodes can be easily added, removed, or modified without affecting the entire
system.
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2. Concurrent Processing: Nodes can often operate concurrently, allowing for parallel execution
of tasks and improved performance in multi-core or distributed systems.

3. Flexibility: Node programming provides flexibility in system design and implementation, as
developers can choose the appropriate level of granularity for nodes based on the requirements
of the application.

4. Fault Isolation: By encapsulating functionality within individual nodes, node programming can
help isolate faults and minimize the impact of failures on the overall system.

Drawbacks of Node Programming:
1. Complexity: Managing a large number of nodes and their interactions can introduce complexity

into the system, leading to potential challenges in debugging, testing, and maintenance.
2. Coordination Overhead: In distributed systems, coordinating the behavior of multiple nodes

may introduce overhead and latency, especially when nodes need to communicate and synchro-
nize with each other.

3. Resource Consumption: Each node consumes system resources such as memory, processing
power, and network bandwidth. Managing resource usage across a large number of nodes can
be challenging and may impact overall system performance.

4. Scalability Challenges: While node programming can support scalability, achieving efficient
scaling in practice may require careful design and optimization to avoid bottlenecks and resource
contention.

2.4 ARAP Parameterization

2.4.1 Problem Statement
In this experiment, we aim to achieve parameterization with no fixed boundaries. In the previous
experiment, we have already implemented the mapping of a grid to a given boundary, where the gen-
eration of the entire grid involves solving a sparse system of equations. Now, we need to consider how
to minimize the deformation of three-dimensional triangles, i.e., minimizing an energy function that
measures distortion. The work being replicated in this paper is Ligang Liu’s work from 2008. Addi-
tionally, we need to continue learning about the usage of the Eigen library, establishing and solving
sparse matrices, SVD decomposition, and node programming.

2.4.2 Propose Algorithms

Firstly, we need to consider the general principles of the algorithm for non-fixed boundary parameter-
ization, which involves minimizing the following energy function:

E(u, L) =
1

2

T∑
t=1

2∑
i=0

cot(θit)||ui
t − ui+1

t − Lt(x
i
t − xi+1

t )||2. (2.4.1)
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2.4 ARAP Parameterization

In this expression, T represents the set of all triangles in the mesh, i iterates over each vertex, cot(θit)
measures the weight of the area, ui

t represents the 2D coordinates of the i-th vertex of the t-th triangle
(chosen as a plane in the initial parameterization), Lt represents the distortion of the t-th triangle
(computed by transforming the 3D triangle into an equivalent 2D triangle and calculating the Jacobian
matrix), and xi

t represents the 2D coordinates obtained after mapping the 3D triangle in a distortion-
minimizing manner.

Therefore, the essence of non-fixed boundary parameterization is to find suitable (u, L) that satisfy
equation 2.4.2 as much as possible.

(u, L) = argmin(u,L)E(u, L). Lt ∈ M. (2.4.2)

Where M is the desired linear transformation.

In this paper, we have reproduced the ARAP (As-Rigid-As-Possible) algorithm, which requires the
matrix M to satisfy the following requirements:

M =

{(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ [0, 2π)

}
In fact, this is a non-linear optimization problem, so it cannot be directly solved by taking partial
derivatives. Therefore, it requires the introduction of local/global methods. The general steps are as
follows.

1. Implement an initial parameterization: This step can utilize any parameterization result obtained
from your work in Assignment 4.

2. Implement the local iteration step of ARAP (Local Phase): Independently execute on each tri-
angle t, relatively straightforward. Implement a second-order matrix SVD decomposition. Fix
parameter coordinates, compute the local orthogonal approximation of the current parameteri-
zation Jacobian.

3. Implement the global iteration step of ARAP (Global Phase): Fix on each triangle t, update
parameter coordinates, solve a global sparse linear system of equations. The coefficients of the
equation system remain fixed and only need to be set once and pre-decomposed.

4. Iterate several times and observe the results.

To implement Step 1, I added a new interface in the interactive interface, allowing the input of the
initialized geometry, which can be connected to the boundary mapping results obtained in Assignment
4. It is shown in Figure 2.3.

Figure 2.3: Node ARAP
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”Input” refers to the initial geometry passed in, while ”Initialization” refers to the initialized geometry,
which can include the boundary mapping result from the fourth assignment. ”iter” can be used to set
the number of iterations. ”Output” refers to the geometry after flattening.

Afterwards, it is necessary to emphasize the process of flattening, and we assume that the result of the
flattening is as follows:

x1(0, 0, 0), x2(|v1v2|, 0, 0), x3(|v1v3| cos θ, |v1v3| sin θ, 0).

Here, θ represents the angle at vertex 1, and the part related to v represents the triangular mesh faces
of the 3D triangle.

For the ”Local” stage, keeping the initialization fixed (i.e., halfedge_mesh_ini), for each triangular
mesh t, we solve for the Lt that satisfies the conditions. Here, we use the following SVD decomposi-
tion:

St(u) =
2∑

i=0

cot θit(u
i
t − ui+1

t )(xi
t − xi+1

t )T = USV T . (2.4.3)

Lt = UV T . (2.4.4)

Lt represents the optimal approximation rotation matrix that implies deformation.

For the ”Global” stage, we fix Lt and solve for the optimized mesh coordinates u, which essentially
involves solving a sparse matrix.∑
j∈N(i)

(cot θij+cot θji)(ui−uj) =
∑

j∈N(i)

(cot θijLt(i,j)+cot θjiLt(j,i))(xi−xj) ∀i = 1, · · · , n. (2.4.5)

Where θij represents the dihedral angle between half-edge ij in the mesh, which can be obtained
through some operations on the half-edge data structure.

This way, we can obtain the new optimized mesh. Then, we utilize the custom function ”Update_” to
perform updates, and proceed to the ”Local” stage for iteration until reaching the specified number of
steps.

2.5 Phong Shading

2.5.1 Problem Statement
We want to implement local rendering with the Blinn-Phong shading model, and to enhance the real-
ism of the scene, we also want to add shadows using the Shadow Mapping algorithm. By implementing
these two algorithms, we aim to achieve a preliminary rendering model.
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2.5.2 Propose Algorithms

2.5.2.1 Blinn-Phong Shading Model

The core expression of the Blinn-Phong shading model, as shown in Equation 2.5.1, is what we aim
to implement first.

I = kaIa + kdId cosα + ksIs cos
k θ. (2.5.1)

Where θ represents the angle between the reflected light and the viewing direction, and α represents
the angle between the incident light and the surface normal. The remaining coefficients are defined as
follows:

1. ka represents the ambient coefficient, with ka = 0.2 in this case.
2. ks represents the specular reflection coefficient, with ks = metallic ∗ 0.8.
3. kd represents the diffuse reflection coefficient, with kd = 1− ks.
4. k = (1− roughness) ∗ 0.2.

For multiple light sources, we can simply accumulate the contributions from each light source.

2.5.2.2 Shadow Mapping
If there is occlusion between the shading point and the light source, naturally the shading point should
appear as ”shadowed”, and the intensity of light at this point should only come from ambient light.
This can significantly reduce computational complexity and make the scene more realistic.

The core idea of this algorithm is that if the actual distance from the shading point to the light source is
greater than the depth obtained by capturing the scene from the light source’s perspective, it indicates
that the shading point is occluded and thus becomes shadowed. We only need to use one condition to
implement this problem.

2.5.2.3 Normal Mapping
In our scene, polygonal objects are abundant, each possibly composed of hundreds or thousands of
flat triangles. To enhance realism and conceal the fact that these objects are made up of numerous
triangles, we apply textures to the triangles to add extra details. While textures are beneficial, the fact
that objects are composed of many triangles becomes apparent upon close inspection. In reality, object
surfaces are not perfectly flat but exhibit countless details and irregularities. Normal maps preserve
the characteristics of each fragment, allowing for significant enhancements in areas with details.

Since the normal map stores normals in tangent space, it needs to be transformed into world coordinates
using a transformation matrix. This transformation matrix is called the tangent-to-world matrix and
is composed of the tangent, bitangent, and normal vectors at the point of interest. These three vectors
are mutually orthogonal unit vectors. The specific process is as follows:

normal = mat3 (tangent,bitangent,normal)*(2*normalmap_value-1);
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2.6 Path Tracing

2.6 Path Tracing

2.6.1 Problem Statement
In our last task, we implemented a model for local lighting and the rendering of shadows. However,
such a lighting model is evidently very limited. The lighting at a single point is highly complex, and the
influence of light from different types and directions on colors is also extremely intricate. Therefore,
in this task, we need to implement a more sophisticated rendering model, which will require numerous
complex processing techniques.

2.6.2 Propose Algorithms

2.6.2.1 Physics Based Rendering

To produce images with lighting and shadows that closely resemble the real world, we need to consider
how light interacts with objects in the physical world and then enters the human eye, creating the
colorful and beautiful world we perceive. Due to space constraints, we will skip the introduction
of geometric optics and wave optics knowledge, and only introduce some physical concepts in light
rendering techniques.

2.6.2.1.1 Irradiance The irradiance L(x, ω) of a light ray is defined as the power per unit area,
where x is the spatial position and ω is the direction along which it is measured. The irradiance can
be denoted symbolically.

2.6.2.1.2 BRDF Function In the real world, objects of different materials exhibit a wide vari-
ety of reflection patterns when interacting with light. To describe how materials reflect incident
light at a given spatial position, we use the Bidirectional Reflectance Distribution Function (BRDF)
fr(x, ωi, ωo).

2.6.2.1.3 Rendering Equation The rendering equation describes the radiance at a point on a sur-
face in a scene. It states that the outgoing radiance at a point in a given viewing direction is equal to
the sum of emitted radiance at that point and the incoming radiance from all directions adjusted by
the BRDF function. This equation is crucial for rendering images as it describes how light propagates
and interacts within a scene.

Lo(x, ωo) = Le(x, ωo) +

ˆ
Ω

fr(x, ωi, ωo) · Li(x, ωi) · (ωi · n) dωi (2.6.1)

Lo(x, ωo) is the outgoing radiance from point x in the direction ωo,
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Le(x, ωo) is the emitted radiance at point x in the direction ωo,
fr(x, ωi, ωo) is the Bidirectional Reflectance Distribution Function (BRDF) at point x for in-
coming direction ωi and outgoing direction ωo,
Li(x, ωi) is the incoming radiance at point x from direction ωi,
(ωi · n) is the cosine factor, where n is the surface normal,
Ω represents the hemisphere of incoming directions.

Interacting light rays with the scene is crucial, as illustrated in Figure 2.4.

Figure 2.4: Interacting Light Rays with Scene

In the case of global illumination alone, as depicted, the scene appears dim, with many details of
objects not directly illuminated by the light source hidden in darkness. However, with the combination
of global illumination and local illumination, the overall scene becomes brighter, and it can illuminate
details of objects that were not visible in the left image.

2.6.2.2 Ray Tracing
The ray tracing algorithm is an important early rendering method in computer graphics. As the name
suggests, its core idea is to trace rays of light from the camera to find light sources. Specifically, a ray of
light is cast from each pixel on the camera plane. This ray undergoes a series of reflections/refractions
in the scene before eventually reaching either a light source or the background. Light that reaches the
background at the pixel presents the color of the corresponding position on the background (multiplied
by a series of factors along the path), while light reaching the light source presents the color of the
light source at that point (also multiplied by a series of factors along the path). The core principle is
illustrated in Figure 2.5.

The main steps of the original algorithm (Whitted-style) are as follows:
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Figure 2.5: Ray Tracing

color trace(point p, vector d, int step)
{

color local, reflected, transmitted;
point q;
normal n;
if(step > max) return(background_color);
q = intersect(p,d,status);
if(status == light_source)
return(light_source_color);
if(status == no_intersection)
return(background_color);
n = normal(q);
r = reflect(q,n);
t = transmit(q,n);
local = phong(q,n,r);
reflected = trace(q,r,step+1);
transmitted = trace(q,t,step+1);
return(local+reflected+transmitted);

}

The main shortcomings of the ray tracing algorithm are as follows:
1. When the light source area is small, the probability of rays emitted from the camera reaching the

light source decreases, leading to many rays being wasted as they cannot reach the light source,
resulting in a large number of noise points. As shown in the Figure 2.6.

2. The ray tracing algorithm actually does not solve the rendering equation; instead, it is based
on simple principles of ray reflection/refraction. Therefore, the physical accuracy of the results
cannot be guaranteed.
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Figure 2.6: Ray Tracing Problem

2.6.2.3 Monte Carlo sampling method
The Monte Carlo sampling method is a numerical computation method based on probability statistics,
commonly used to simulate random phenomena. In graphics, Monte Carlo methods are often used to
estimate complex lighting effects in ray tracing, such as global illumination and indirect lighting.

This approach approximates solutions by generating a large number of random samples, thereby com-
pensating for the shortcomings of traditional ray tracing algorithms to some extent. Monte Carlo
sampling can effectively reduce noise and improve the quality and realism of rendering results.

The description of the problem is as follows:

We need to solve the numerical integral as follows:

I =

ˆ b

a

f(x) dx.

We can estimate the value of this integral using a computer through sampling methods. Our goal is to
construct random variables to obtain an unbiased estimate, denoted as

Î =
f(x)

p(x)
.

In fact,

E[Î] = E[
f(x)

p(x)
] =

ˆ b

a

f(x)

p(x)
p(x) dx =

ˆ b

a

f(x) dx

This way, we obtain an unbiased estimate of Î .

However, in practice, we often do not know the probability distribution function, only can estimate it.
The most commonly used estimations include the uniform distribution. Suppose we sample n samples,
x1, x2, . . . , xn,

Îj =
f(xj)

p(xj)
.
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Then we obtain an estimate of the original integral as follows:

Ī =
1

n

n∑
j=1

Îj.

This estimate satisfies: ˆ b

a

f(x) dx = lim
n→∞

Ī = lim
n→∞

1

n

n∑
j=1

Îj.

We can also introduce parameters pi according to the importance of different sampling points, satis-
fying:

n∑
j=1

ωj = 1.

Finally:

Ī =
n∑

j=1

ωj
f(xj)

p(xj)
.

This is the core idea of using Monte Carlo sampling algorithm to solve numerical integration.

2.6.2.4 Pace Tracing
Path tracing algorithm is a ray tracing method based on the Monte Carlo sampling algorithm. Its core
idea is similar to ray tracing, which is to trace rays from the camera to find light sources. However, in
path tracing, multiple rays are emitted from each pixel on the camera plane to search for light sources.
When rays intersect with objects in the scene and undergo reflection, a direction is sampled from
the hemisphere according to a predetermined probability distribution function (referred to as BRDF
sampling), and this probability factor is then removed from the final expression. The rest of the process
is consistent with ray tracing.

The essence of the path tracing algorithm is to combine the contributions of multiple light paths to
the lighting effect according to their probabilities, thus realizing the rendering equation. The core
algorithm is shown in Figure 2.7.

Figure 2.7: Path Tracing

It’s worth mentioning that since this is a recursive algorithm, it must terminate. To ensure termination
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of the iterative reflection of rays, we can introduce the technique of Russian Roulette: generating a
random number at each iteration to determine whether to proceed with the next reflection of the ray,
thus preventing the possibility of infinite iteration.

The algorithm proceeds as follows:

shade(p, wo)
Test Russian Roulette with p_rr, if fail then return 0.0;
Randomly choose one direction wi with pdf(wi);
Trace a ray r(p, wi);
if ray r hit the light:

return L_i * f_r * cos / pdf(wi) / p_rr;
else if ray r hit an obj at position q:

return shade(q, -wi) * f_r * cos / pdf(wi) / p_rr;
ray_generation(camPos, pixel)

Uniformly choose N sample postitions within pixel;
pixel_radience = 0.0;
for each sample in the pixel:

Shoot a ray r(camPos, cam_to_sample_direction);
If ray r hit the scene at p:
pixel_radience += 1/N * shade(p, cam_to_sample_direction);

return pixel_radience;

However, it is worth noting that the path tracing algorithm does not solve the problem when the light
source area is very small, and emitted rays cannot find the light source. A natural approach to address
this issue is: since rays emitted from the camera cannot reach the light source, can we directly emit
rays from the light source to reach objects and directly calculate global illumination? Following this
idea, we can improve the efficiency of the path tracing algorithm by sampling the light source. As
shown in the following Figure 2.8.

Figure 2.8: Path Tracing Problem and Solution

At this point, by geometric relationships, the integral over the BRDF hemisphere is transformed to the
plane A where the area light source is located:

L0(x, ω0) =

ˆ
Ω

Li(x, ωi)fr(x, ωi, ωo) cos θdωi =

ˆ
A

Li(x, ωi)fr(x, ωi, ωo)
cos θ cos θ′

||x′ − x||2
dA. (2.6.2)
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In the improved path tracing algorithm, the main process of shading is as follows:

shade(p, wo)
// direct light, sampling the light
Uniformly sample the light at x with pdf_light = 1/A;
Check visibility, if invisible L_dir = 0;
else L_dir = L_i * f_r * cos(theta1) *

cos(theta2) / |x - p|^2 / pdf_light;

// indirect light, BRDF sampling
L_indir = 0.0;
Test Russian Roulette with p_rr
Randomly choose one direction wi with pdf(wi);
Trace a ray r(p, wi);
if ray r hit an non-emitting obj at position q:

return shade(q, -wi) * f_r * cos / pdf(wi) / p_rr;
return L_dir + L_indir;

2.7 Mass Spring

2.7.1 Problem Statement
This assignment involves simulation, specifically using a spring-mass system. The spring-mass system
is a fundamental technique in elastic body simulation. Due to its ease of implementation and good
results, it has been widely used in applications such as gaming for simulating hair, cloth, and elastic
bodies. It has also inspired many subsequent methods for elastic body simulation.

A spring-mass system is essentially a graph composed of nodes and edges between them. Each node
of the graph represents a mass, and each edge represents a spring. It discretizes the continuous body.
The grid can be a 2D grid, used for simulating objects like cloth or paper, as shown in the figure below.
It can also be a 3D grid used for simulating volumetric objects.

2.7.2 Propose Algorithms

2.7.2.1 Semi-Implicit Method

To get the discrete motion of these points over time, we need to discretize time. Suppose we have n

vertices, and we arrange all vertices into a matrix x ∈ R3n×1.

To initiate the movement of the object, one approach is to assign a velocity to each vertex. If we use
semi-implicit time integration, the velocity vn+1 ∈ R3n×1 can be determined as follows, according to
Newton’s second law:
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2.7 Mass Spring

vn+1 = vn + hM−1(fint(x
n) + fext)

Here, M ∈ R3n×3n is the system’s mass matrix. Here, we simply set it as a diagonal matrix.

According to the energy perspective, let E be the elastic energy of the system. The internal elastic
force fint can be defined as:

fint = −∇E

If we have an expression for the energy gradient, we can calculate the internal elastic force. By adding
external forces such as gravity, we can obtain the total force acting on the vertices. Then, we can
initiate the movement of the object!

Now, let’s define the energy of a spring i as:

Ei =
k

2
(∥xi1 − xi2∥ − L)2

We define xi := xi1 − xi2. Then, the total energy is:

E =
∑
i

Ei =
∑
i

k

2
(∥xi∥ − L)2

Its gradient can be calculated as:

∇E =
∑
i

k(∥xi∥ − L)
xi

∥xi∥

Finally, to simulate damping, we can multiply the velocity by a damping coefficient vel × damping.

Here, we need to fix some points (Dirichlet boundary conditions). Then, we can simply set the external
forces and velocities of these fixed points to zero.

2.7.2.2 Implicit Euler Integration
Next, we need to implement implicit Euler integration:

xn+1 = xn + hvn+1

vn+1 = vn + hM−1(fint(x
n+1) + fext)

But we find that this problem needs to be turned into an equation about xn+1.
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2.7 Mass Spring

Here is a commonly used approach to solve it.

Rearranging:

xn+1 = xn + hvn + h2M−1(−∇E(xn+1) + fext) (4)

Let’s define y := xn + hvn + h2M−1fext.

We can transform equation (4) into:

1

h2
M(xn+1 − y) +∇E(xn+1) = 0

This equation can be viewed as the first-order optimality condition (KKT) for an optimization problem
(let x = xn+1 ∈ R3n×1):

min
x

g(x) =
1

2h2
(x− y)⊤M(x− y) + E(x) (5)

This brings us back to the optimization field that you may have (probably) studied.

The derivative of energy g is:

∇g(x) =
1

h2
M(x− y) +∇E(x)

To solve the optimization problem, we can use gradient descent, but its convergence speed is relatively
slow (linear convergence rate). In computer graphics, a more commonly used approach is to use
Newton’s method:

xn+1 = xn −H−1∇g

So we need to compute the Hessian matrix H = ∇2g of energy g.

First, let’s look at the Hessian of a spring’s energy:

Hi = ∇2Ei

= k
xixi

⊤

∥xi∥2
+ k

(
1− L

∥xi∥

)(
I− xix

T
i

∥xi∥2

)

So the overall Hessian H ∈ R3n×3n is assembled by stacking the Hessian of each spring H ∈ R3×3

according to vertex indices. The def of H is shown in Figure 2.9.

Finally, we write out the Hessian of g:
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2.7 Mass Spring

Figure 2.9: def of H

∇2g =
1

h2
M+H

Now, we can use Newton’s method for optimization:

xn+1 = xn −H−1∇g(xn)

Here, it actually involves a part of Line Search. The general process for optimizing a problem based on
line search methods is: 1. Determine the search direction p (here, p = H−1∇g), 2. Then determine
the step size α to advance (this step is called Line Search), 3. Finally, update xn+1 = xn − αp. Since
the recommended step size for Newton’s method is 1, we will not perform additional Line Search here.

H is a sparse matrix (only neighboring vertices will have corresponding non-zero elements in the
matrix), and we use ‘Eigen::SparseMatrix‘ to store it.

If we want to fix points during the solving process, simply setting the fixed points back to their original
positions afterward may lead to excessive stretching of the boundary region. The root of the problem
lies in considering hard constraints during the solving process.

We can formulate the problem as a constrained optimization problem:

min
x

g(x) =
1

2h2
(x− y)⊤M(x− y) + E(x)s.t. c(x) = Sx = 0

In a broad sense, this is indeed a constrained optimization problem. However, we don’t necessarily
need to use the method of Lagrange multipliers to solve it.

Instead, we can follow the approach used in Homework 3 for handling boundary conditions: modify
the Hessian matrix while solving the equations, setting the coefficients corresponding to the fixed
points to 1. Alternatively, we can use the transformation Hnew = STHS to obtain a smaller matrix,
where S is the selection matrix.
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2.8 SPH Fluid

2.7.2.3 Interactions
Simulating collision and friction is also an important topic in computer graphics. If not handled prop-
erly, it can lead to the common ”popping” issue in games.

For this assignment, we can also consider the collision between a spring-mass system and a sphere.
We can even make this sphere move.

We can use a simple penalty-based contact force as follows:

Figure 2.10: Principle of collision

f = kpenalty max(s · r − ∥x− c∥, 0) (x− c)

∥x− c∥

Here, c is the center of the sphere, r is the radius of the sphere, s is a magnification factor of the radius
(e.g., let s = 1.1), which is used to generate contact force even when actual contact has not occurred to
reduce visual penetration (denoted as ‘collision_scale_factor‘ in the program), and kpenalty is a tunable
parameter.

2.8 SPH Fluid

2.8.1 Problem Statement
In this assignment, we will delve into the world of fluids, where you will learn to utilize Smoothed
Particle Hydrodynamics (SPH), a classic particle-based simulation method, to compute fluid motion.

Smoothed Particle Hydrodynamics (SPH) is a method for fluid simulation that relies on representing
the fluid with a large number of particles and simulating their interactions to mimic fluid motion. The
core idea of SPH is to approximate continuous fluid properties (such as density, pressure, velocity,
etc.) by summing over discrete particles. This allows SPH to effectively handle large deformations,
surface tension, and interactions between fluids and solids.

To use SPH for simulating fluid motion, it is necessary to establish the basic equations of motion for
the fluid, typically including equations for mass conservation, momentum conservation, and energy
conservation. These equations describe the internal motion of the fluid, as well as interactions between
the fluid and solid boundaries or other fluids. In SPH, these equations are discretized based on each
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2.8 SPH Fluid

particle in the fluid, and then approximated by summing over neighboring particles to approximate the
conservation equations for continuous fluid.

In terms of numerical solving, SPH typically involves discretizing the equations in both time and
space. Time discretization often employs explicit or implicit time integration methods such as Euler’s
method, Runge-Kutta method, etc. Spatial discretization involves effectively representing physical
quantities like density, pressure, velocity, etc., and updating these quantities based on interactions
between neighboring particles.

In practical applications, SPH must account for various complex physical phenomena such as surface
tension, viscosity, shock waves in fluid flow, etc. Therefore, selecting appropriate numerical methods
and parameter tuning is crucial for obtaining accurate simulation results. Additionally, to enhance
simulation efficiency, considerations such as spatial partitioning, particle sorting, etc., are often taken
into account.

2.8.2 Propose Algorithms

2.8.2.1 Navier-Stokes Equations

Fluid simulation and the solution of general partial differential equations (PDEs) are fundamentally
similar, both based on appropriate temporal and spatial discretization formats, utilizing numerical
methods to solve the governing PDEs describing their motion. Within fluid dynamics, we solve the
Navier-Stokes equations:

ρ
Dv

Dt
= ρg −∇p+ µ∇2v

∇ · v = 0
(2.8.1)

where ρ is the fluid density, v is the velocity field, g is the gravitational acceleration, p is the pressure
within the fluid, and µ is the viscosity coefficient. The right-hand side terms of the first equation
correspond to gravity ρg, pressure −∇p, and viscous forces µ∇2v.

It’s worth mentioning that the term D·
Dt

in equation (2.8.1) is referred to as the ”material derivative” or
”derivative following the motion,” which is a special case of the total derivative in fluid mechanics:

Consider a fluid element moving with the flow, and at each point within this element, we sample a
physical quantity f = f(x, t), where x is the spatial position and t is time. As the fluid element
moves, x = x(t) becomes a function of time. Then, the total derivative of f with respect to time at the
sample point is given by: df

dt
= ∂f

∂t
+ ∂f

∂x
∂x
∂t

= ∂f
∂t

+ v · ∇f . We denote this as the material derivative
of the physical quantity f on the moving fluid element, expressed as Df

Dt
, which accounts for both the

change of f due to time and the spatial motion of the sampling point.

NS equation’s first line cannot be independently solved. To determine the pressure p, we need to
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2.8 SPH Fluid

consider the incompressibility condition of the fluid:

∇ · v = 0 (2.8.2)

Combining the physical meaning of divergence (fluid convergence and divergence), we can see
that incompressibility is equivalent to mass conservation. That is, the material derivative of the fluid
density at any position in space is zero (if the divergence is not equal to zero, i.e., the fluid converges
to or diverges from a point, then the mass of the fluid at that point will increase or decrease, violating
mass conservation). This is illustrated in Figure 2.11.

Figure 2.11: Illustration of incompressibility condition

2.8.2.2 Spatiotemporal Discretization
In terms of temporal discretization, a common approach in fluid simulation is a technique called ”op-
erator splitting,” which divides the Navier-Stokes equations into two parts:

1. Without considering pressure, updating v:

ρ
Dv

Dt
= ρg + µ∇2v

2. Considering pressure, calculating pressure, and updating v:

ρ
Dv

Dt
= −∇p

3. Based on the final velocity, updating particle positions.

In terms of spatial discretization, Smoothed Particle Hydrodynamics (SPH) samples physical fields us-
ing particles and approximates the physical quantities at unsampled positions through kernel functions.
Commonly used kernel functions in SPH are as follows (d is the dimension of the simulation):
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2.8 SPH Fluid

W (r, h) = σd


6(q3 − q2) + 1 for 0 ≤ q ≤ 1

2

2(1− q)3 for 1
2
≤ q ≤ 1

0 otherwise

with q =
1

h
∥r∥, σ1 =

4

3h
, σ2 =

40

7πh2
, σ3 =

8

πh3

2.8.2.3 Computational Formula
The computational formulas in SPH for density and velocity divergence are as follows:

1. Density calculation:

ρi =
∑
j+i

(
mj

ρj

)
mjW (xi − xj, h) =

∑
j+i

mjWij (2.8.3)

Here, we denote Wij = W (xi,xj, h), where j represents all neighboring particles of particle i. In
SPH, h represents the radius of the kernel function, and we use ∆t to represent the time step.

Note that when calculating the density of a particle, we need to consider its own contribution to density,
miW (0, h) (using the function W_zero).

In the program, we assume that each fluid particle has the same mass (equal to the volume multi-
plied by the density of the fluid at rest, where the resting density is 1000, the particle radius is set to
0.025, and the particle volume is estimated using a cube; please refer to the implementation of the
ParticleSystem class), which can be accessed using ps_.mass().

2. Velocity divergence calculation:

∇ · vi =
∑
j

mj

ρj
(vj − vi) · ∇Wij (2.8.4)

For the calculation of viscosity, we recommend using the formula:

∇2vi = 2(d+ 2)
∑
j

mj

ρj

vij · xij

∥xij∥2 + 0.01h2
∇Wij (2.8.5)

Where d is the dimension of the simulation, which is 3 in this case. We divide the viscosity coefficient
µ by the particle density to obtain the value ν = µ

ρ
(referred to as the kinematic viscosity coefficient),

which serves as a tunable simulation parameter named viscosity.

3. pressure calculation:

The task for this assignment is to implement a classical method called ”Weakly Compressible Smoothed
Particle Hydrodynamics” (WCSPH).
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2.9 Character Animation

The pressure calculation follows the equation of state (EOS) formula:

pi = k1

((
ρi
ρ0

)k2

− 1

)
(2.8.6)

In the program, k1 is represented by the parameter stiffness, and k2 is represented by the parameter
exponent. Note that the pressure should generally be greater than 0. In case of insufficient particles,
you can set pi = max(0.0, pi).

The acceleration due to pressure is given by −1
ρ
∇p, where:

∇pi = ρi
∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij (2.8.7)

Here, ∇pi represents the gradient of pressure for particle i, ρ denotes the density, m is the mass, and
Wij is the kernel function.

2.9 Character Animation

2.9.1 Problem Statement
In this task, we are implementing character animation. Although there is a lot of research in this area,
our task is to achieve the simplest results. To simulate a character, we first need to study the changes
in the skeleton and then address the skin. The skin is related to certain points on the skeleton and
is handled using a method similar to interpolation. For the skeleton, we only need to consider the
transformation of coordinates.

Skeleton animation is the foundation of character animation, primarily involving the transformation
of the skeleton’s coordinates. The skeleton typically consists of a series of joints connected by bones,
forming a hierarchical structure. Each joint has a position and a rotation, and through these transfor-
mations, various character movements can be realized. We only need to focus on the transformations
of the joints, specifically the changes in their positions and rotations over time.

Based on the changes in the skeleton, we then need to study the skin. Skin deformation applies the
skeleton’s animations to the character’s mesh, allowing the character’s appearance to change with the
movement of the skeleton. Each point on the skin is influenced by certain points on the skeleton, and
we use interpolation to handle the deformation of these points. Each skin point is affected by multiple
joints, and the final deformation position is calculated based on weights.

By transforming the skeleton’s coordinates and interpolating the skin points, we can achieve basic char-
acter animation. Although this method is simple, it can produce relatively natural character movements
and provides a foundation for more complex animations in the future.
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2.9 Character Animation

2.9.2 Propose Algorithms

2.9.2.1 Skeletal Animation

Skeleton animation consists of two main components:
1. Skeleton: A low-degree-of-freedom hinge system that acts as the driver.
2. Skinning: The surface mesh bound to the skeleton. The movement of the mesh vertices is

influenced by multiple skeleton joints, and their final spatial coordinates are calculated through
interpolation and other methods.

Due to its wide applicability and efficiency, skeletal animation is widely used in games and animations.

We can observe that the movement of parent joints will drive the movement of child joints, forming a
tree-like structure similar to the diagram below:

Figure 2.12: Illustration of Skeleton

Next, let’s introduce some important transformation matrices:
1. localTransform: The coordinate transformation of the joint in the local coordinate system (4x4

matrix).
2. worldTransform (or global transform): The coordinate transformation of the joint in the world

coordinate system (4x4 matrix). For the root joint, in our assignment, we can directly set its
worldTransform = localTransform.

3. bindTransform: The position and orientation of the joint relative to the mesh vertices in the
bind pose (e.g., T-pose). This is typically defined during the creation of the 3D model and
remains constant throughout the animation’s lifecycle. Its role will be seen in the skinning
section below.

For a child joint, its worldTransform is the composite of the parent joint’s worldTransform and the
child joint’s localTransform:
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2.9 Character Animation

worldTransformchild = worldTransformparent × localTransformchild

This hierarchical transformation ensures that changes in a parent joint’s position and orientation will
correctly propagate to its child joints, maintaining the integrity of the skeletal structure during anima-
tion.

2.9.2.2 Skinning Animation

In skeletal animation, skinning refers to the process of deforming a character’s mesh based on the
transformations of its skeleton. This ensures that the surface mesh moves naturally with the underlying
bone structure.

One of the most common techniques for skinning is Linear Blend Skinning (LBS), also known as
smooth skinning. In LBS, each vertex of the mesh is influenced by multiple joints, and its final position
is calculated based on the weighted transformations of these joints.

1. Vertex Weights: Each vertex vi on the mesh is associated with one or more joints, with each
association having a corresponding weight wij . These weights determine the influence each
joint has on the vertex. The sum of weights for each vertex is typically normalized to 1.

2. Vertex Transformation: The final position v′i of a vertex vi in the animated mesh is calculated
as the weighted sum of the transformed positions influenced by each joint. Mathematically, this
is expressed as:

v′i =
∑
j

wij · (worldTransformJj · bindTransform−1
Jj

· vi)

Here, bindTransformJj is the bind pose transformation of joint Jj , and worldTransformJj is the
current world transformation of joint Jj .
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Chapter 3 Modeling Course in USTC

This chapter comes from Modeling course in USTC, 2024, taught by Renjie Chen.

The homepage is listed: http://staff.ustc.edu.cn/~renjiec/mm2024/

3.1 Seam Carving for Content-Aware Image Resizing

3.1.1 Problem Statement
We need to adjust the size of the given image, and this adjustment is not very straightforward. In this
project, we only consider resizing the image, so the core issue is to consider the removal of certain
pixels. To achieve this, we propose an energy function for each pixel. Naturally, we aim to remove
pixels with lower energy, as they are relatively less important in the image. Additionally, we need
to maintain the continuity of the image to prevent significant information distortion. Therefore, we
introduce the concept of seams.

3.1.2 Propose Algorithms

3.1.2.1 The Energy Function
We use the common sum of gradients energy function.

e1(I) = |∂I
∂x

|+ |∂I
∂y

| (3.1.1)

The MATLAB has provided us the energy function.

costfunction = @(im) sum(imfilter(im, [.5 1 .5; 1 -6 1; .5 1 .5]).^2, 3);

This MATLAB expression defines a cost function named costfunction, which takes an image im as
input. Within the function, the imfilter operation applies a specific filter to the input image, which is
designed to detect edges. The filter used here is a 3x3 convolution kernel with weights [.5 1 .5; 1 -6 1;
.5 1 .5]. After applying the filter, the result is squared element-wise and then summed along the third
dimension (which typically represents color channels in an RGB image) using the sum function. This
operation computes the squared magnitude of the filtered image, effectively emphasizing the presence
of edges in the image. Thus, the costfunction evaluates the overall edge strength in the input image.

3.1.2.2 Seams
Formally, let I be an n×m image and define a vertical seam to be:

sx = {sxi }ni=1 = {(x(i), i)}ni=1 (3.1.2)

In equation 3.1.2,
∀ i, |x(i)− x(i− 1)| ≤ 1.

http://staff.ustc.edu.cn/~renjiec/mm2024/


3.2 Image Processing

where x is a mapping x : [1, ..., n] → [1, ...,m]. That is, a vertical seam is an 8-connected path of
pixels in the image from top to bottom, containing one, and only one, pixel in each row of the image.

Similarly, if y is a mapping y : [1, ...,m] → [1, ..., n], then a horizontal seam is:

sy = {syi }ni=1 = {(y(i), i)}ni=1 (3.1.3)

In equation 3.1.3,
∀ i, |y(i)− y(i− 1)| ≤ 1.

3.1.2.3 Optimization
We look for the optimal seam s∗ that minimizes the seam cost :

s∗ = min
s

E(s) = min
s

n∑
i=1

e(I(si)). (3.1.4)

The optimal seam can be found using dynamic programming. The first step is to traverse the image
from the second row to the last row and compute the cumulative minimum energy M for all possible
connected seams for each entry (i, j):

M(i, j) = e(i, j) + min(M(i− 1, j − 1),M(i− 1, j),M(i− 1, j + 1)). (3.1.5)

At the end of this process, the minimum value of the last row in M will indicate the end of the minimal
connected vertical seam. Hence, in the second step we backtrack from this minimum entry on M to
find the path of the optimal seam. The definition of M for horizontal seams is similar.

3.1.2.4 Resizing
The project just requires us to delete the columns. We also provide an easy way to delete the rows. In
the paper, the author uses another optimization, leading to a better outcome.

MATLAB has provided a function imrotate.

rim = imrotate(im, 90)

In this way, we can rotate the image. If we choose to rotate it by 90 angle, the vertical direction can be
changed into horizon direction, Then we can use the deleting function for vertical direction.

3.2 Image Processing

3.2.1 Problem Statement
We have two small tasks in image processing: image compression and low-rank image restoration. To
achieve this, we primarily utilize Singular Value Decomposition (SVD). In image processing, an image
can be represented as a matrix, where each element represents the grayscale value or color component
of a pixel. Singular Value Decomposition is a method of decomposing a matrix into the product
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of three matrices: an orthogonal matrix, a diagonal matrix, and the transpose of another orthogonal
matrix. In this decomposition, the diagonal matrix contains singular values, where larger singular
values correspond to more information in the image. Image compression mainly involves preserving
the larger singular values, while low-rank restoration involves decomposing the matrix into a low-rank
component and noise.

3.2.2 Propose Algorithms

3.2.2.1 Image Compression
Image compression is the main algorithm we are implementing in this project. First, we need to
read information from the image. In image processing, an image can be viewed as a matrix, where
each element represents the pixel’s grayscale value or color component. MATLAB implements this
information through the following function:

% Read the image
im = imread('image.jpg');

% Get the image dimensions
[rows, cols, channels] = size(image);

The variable im contains the image information and allows access to the pixels of each channel. By
fixing a channel, we can obtain a color pixel matrix corresponding to each point. For such matrices,
we can directly use the SVD decomposition, which is already provided as a function in MATLAB.

% SVD method
[U,S,V] = svd(A);

In this equation,
1. A is the input matrix.
2. U is an m-by-m unitary matrix representing the left singular vectors.
3. S is an m-by-n diagonal matrix containing the singular values of A.
4. V is an n-by-n unitary matrix representing the right singular vectors.

We truncate using the following approach: Since users typically don’t know the rank of the matrix, we
include the rank of the matrix for evaluation. If the specified retention value is greater than the rank,
we directly return the original matrix. However, if the retention value is smaller, we set the elements
beyond the retention value to zero, as the singular values provided by the library function are already
sorted in descending order.

rank_S = rank(S);
% Change the color information
if (k >= rank_S)

im(:,:,i) = channel;
else

for j = k+1:rank_S
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S(j,j) = 0;
end
im(:,:,i) = U*S*V';

end

Surprisingly, V ′ directly implements the transpose of V , making the notation quite concise.

”I didn’t find a function in the existing C++ library that provides image information as conveniently as
in MATLAB. Instead, I found the ’get_pixel’ function in the IMGUI library to obtain image informa-
tion. For each channel stored in Eigen library matrices, I constructed the information of each matrix
into another dynamic array.

for (int i = 0; i < data_->width(); ++i)
{

for (int j = 0; j < data_->height(); ++j)
{

A[ch](i,j) = static_cast<double>(data_->get_pixel(i, j)[ch]);
}

}

We use the Eigen library for SVD decomposition. However, C++ provides a direct truncation function.
The code is as follows, and the logic is identical to MATLAB:

int num = static_cast<int>(singularValues.size());
if (k >= num)
{

continue;
}
else
{

A[ch] = U.leftCols(k)* singularValues.head(k).asDiagonal() * V.leftCols(k).
transpose();

}

In the end, we use the set_pixel function to assign colors to each pixel.

std::vector<uchar> col;
for (int ch = 0; ch < 3; ch++)
{

col.push_back(static_cast<uchar>(std::clamp(A[ch](i,j), 0., 255.)));
}
data_->set_pixel(i, j, col);

For grayscale image conversion, we apply the same logic, but there are some changes in color assign-
ment.
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uchar gray_value = (color[0] + color[1] + color[2]) / 3;
data_->set_pixel(i, j, { gray_value, gray_value, gray_value });

3.2.2.2 Low-rank Image Restoration
This is another task for this assignment. Here, only the most basic approach has been used. Also, a
fully functional interactive system has not been implemented.

For some highly symmetric images, it’s evident that pixels in different rows or columns are very close
to each other. Thus, the pixel matrix has a low rank. However, certain noise can lead to abnormal
increases in the rank of the image matrix. We use the Robust PCA method to decompose a matrix into
a low-rank component and a noise component, and then draw them separately, achieving a restoration
effect.

Robust PCA (Principal Component Analysis) is a technique used for matrix decomposition, particu-
larly for dealing with data that contains outliers or noise. It aims to separate a given matrix into two
components: a low-rank matrix representing the underlying structure or signal, and a sparse matrix
representing the noise or outliers. The algorithm minimizes the following objective function:

min
L,S

∥L∥∗ + λ∥S∥1 (3.2.1)

where:
1. L is the low-rank matrix representing the underlying structure.
2. S is the sparse matrix representing the noise or outliers.
3. ∥L∥∗ denotes the nuclear norm of L, which is the sum of its singular values and serves as a

proxy for its rank.
4. ∥S∥1 denotes the L1-norm of S, promoting sparsity in S.
5. λ is a parameter that balances between the low-rank and sparse components.

The algorithm iteratively updates L and S until convergence, typically using optimization techniques
such as alternating direction method of multipliers (ADMM) or proximal gradient descent.

Robust PCA has various applications in computer vision, image processing, and data analysis, where
it can be used for tasks such as background subtraction, denoising, and anomaly detection. It provides
a robust way to decompose data into meaningful components, even in the presence of outliers or noise.

Specifically, in this experiment, we adopt the ADMM (Alternating Direction Method of Multipliers)
Robust PCA approach. The ADMM algorithm iteratively updates L, S, and a Lagrange multiplier Y
as follows:

1. Update L (matrix completion step):

L = SVD_Threshold(M − S +
1

ρ
Y ) (3.2.2)
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2. Update S (sparse recovery step):

S = svt(M − L+
1

ρ
Y,

λ

ρ
) (3.2.3)

3. Update Lagrange multiplier Y :

Y = Y + ρ(M − L− S) (3.2.4)

4. Compute primal and dual residuals:

Primal_Residual = ∥M − L− S∥F (3.2.5)

Dual_Residual = ρ∥L− Lold∥F (3.2.6)

5. Check convergence: If Primal_Residual < Tolerance and Dual_Residual < Tolerance, then break loop
6. Store previous low-rank component:

Lold = L (3.2.7)

Specifically, SVD_Threshold is related to SVD method, svt is a singular value thresholding operator.

3.3 Interpolation and Neural Work

3.3.1 Problem Statement
The tasks we are undertaking this time are related to interpolation. The first task involves inputting
points on a canvas and using various interpolation methods and parameterization techniques to draw
curves determined by these points, including fitting methods for model training. The second task
involves using a neural network to classify insect data. We can choose different neural network models
and activation functions, and we can also adjust some parameters.

3.3.2 Propose Algorithms

3.3.2.1 Curve Reconstruction
For our task, we aim to fit curves by inputting points on a canvas and employing various parameter-
ization methods and interpolation techniques. We have implemented four different parameterization
methods and five different interpolation methods.To use our demo, you first need to select an inter-
polation function from the first row and then choose a parameterization method from the second row.
This will allow you to display the desired results.

Our core approach is to first allow users to input points via left-clicking on the interface, as illustrated in
Figure 3.1. The input points will simultaneously be recorded in a file named points.txt. Subsequently,
we will proceed with parameterizing the curves. The ”clear” button indicates clearing all current
drawings on the graph as well as removing all points stored in the ”points” file.

During parameterization, the first and last input points represent states at time 0 and 1, respectively.
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Figure 3.1: GUI for Curve Reconstruction

This approach allows us to normalize the parameterization after the process. The mathematical ex-
pression for parameterization is as follows:

1. Chord Parameterization:

ti =

∑i
j=1

√
(xj − xj−1)2 + (yj − yj−1)2

max
(∑n

j=1

√
(xj − xj−1)2 + (yj − yj−1)2

) .
2. Centripetal Parameterization:

ti =

∑i
j=1

√√
(xj − xj−1)2 + (yj − yj−1)2

max

(∑n
j=1

√√
(xj − xj−1)2 + (yj − yj−1)2

) .

3. Uniform Parameterization:
ti =

i

n
.

4. Foley-Nielsen Parameterization:

t0 = 0

ti − ti−1 =
n∑

i=1

N(Pi, Pi−1)

N(Pi, Pi−1) =


d1

(
1 + 3

2
α̂1d1
d1+d2

)
if i = 1

di

(
1 + 3

2
α̂i−1di−1

di−1+di
+ 3

2
α̂idi

di+di+1

)
if i = 2, . . . , n− 1

dn

(
1 + 3

2
α̂n−1dn−1

dn−1+dn

)
if i = n

where, di = ||Pi − Pi−1||2,
αi = angle(Pi−1, Pi, Pi+1),

α̂i = min(π − αi,
π

2
)
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3.3 Interpolation and Neural Work

We have utilized five different interpolation functions, implemented through libraries, for our task.
1. Polynomial Interpolation: Polynomial interpolation fits a polynomial function to the given data

points. It aims to find a polynomial of degree n that passes exactly through n + 1 data points.
This method is straightforward and widely used due to its simplicity.

2. Cubic Spline Interpolation: Cubic spline interpolation divides the curve into smaller segments
and fits a cubic polynomial to each segment. It maintains smoothness by enforcing continuity
of derivatives between adjacent segments, resulting in a piecewise smooth curve.

3. Radial Basis Function (RBF) Interpolation: RBF interpolation constructs an interpolant by fit-
ting a sum of radial basis functions to the given data points. Each basis function depends only
on the distance from the center of a chosen point, enabling the interpolation of scattered data.

4. Neural Network Interpolation: Neural network interpolation utilizes a neural network model to
approximate the relationship between input and output data points. The neural network learns
the mapping between input and output data through training, allowing it to predict values at
unobserved points.

5. Bézier Interpolation: Bézier interpolation constructs a curve defined by control points and inter-
polation of these points to generate a smooth curve. It is commonly used in computer graphics
and CAD software for its simplicity and ability to produce aesthetically pleasing curves.

Once parameterized and interpolated, we can reconstruct the curve of the given input points.

3.3.2.2 Insect Classification Models
The core objective of this task is to train a neural network model using labeled data that has already
been identified. Subsequently, the trained model can be used to predict outcomes for unknown data.

First, we need to determine the target of model learning, which is typically the given data multiplied
by the learning rate, set to 0.8. Then, we need to establish the model. In this project, we have built two
different types of neural network models: MLP and RNN. For the MLP model, we have utilized three
different activation functions, which can be adjusted in the code. Unused code segments need to be
commented out. Finally, we evaluate the accuracy of the model and visualize the evaluation, including
distribution visualization and the changes of train loss and accuracy over training epochs.

Model training typically requires the following parameters:
1. input size: This parameter represents the number of features in the input data. In this context, it

indicates the dimensionality of the input data fed into the neural network.
2. hidden size: It refers to the number of neurons or units in the hidden layer of the neural network.

This parameter controls the complexity and capacity of the model to learn and represent patterns
in the data.

3. num classes: This parameter specifies the number of classes or categories in the classification
task. It defines the output dimensionality of the neural network, indicating the number of distinct
labels the model is trained to predict.
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4. learning rate: The learning rate is a hyperparameter that controls the step size of the optimiza-
tion algorithm during training. It determines how much the model parameters are adjusted in
response to the gradient of the loss function. A higher learning rate can lead to faster conver-
gence but may risk overshooting the optimal solution, while a lower learning rate may result in
slower convergence but more stable training.

5. num epochs: This parameter represents the number of training epochs, which is the number
of times the entire dataset is passed forward and backward through the neural network during
training. Each epoch consists of one forward pass to compute the loss and one backward pass to
update the model parameters based on the computed gradients. Increasing the number of epochs
allows the model to see the data multiple times and learn from it more thoroughly, potentially
improving performance.

Indeed, adjusting the learning rate and the number of epochs can have a significant impact on the
training process and the resulting model performance.

1. Learning Rate (lr):
(a). Higher learning rates can lead to faster convergence but risk overshooting the optimal

solution.
(b). Lower learning rates may result in slower convergence but offer more stability and smoother

training dynamics.
(c). It’s crucial to find an appropriate learning rate that balances convergence speed and stabil-

ity to achieve optimal performance.
2. Number of Epochs (num epochs):

(a). Increasing the number of epochs allows the model to see the data more times, potentially
improving performance.

(b). However, excessive epochs may lead to overfitting if the model memorizes the training
data without generalizing well to unseen data.

(c). Regularization techniques such as early stopping or dropout can help mitigate overfitting
and determine the optimal number of epochs.

In this experiment, we employed two distinct neural network architectures.
1. MLP (Multi-Layer Perceptron): MLPs are feedforward neural networks with multiple layers

of interconnected neurons. They excel at learning complex patterns in static input-output map-
pings, making them suitable for tasks such as classification and regression. With fully connected
layers and nonlinear activation functions, MLPs can approximate any continuous function to ar-
bitrary accuracy given enough parameters. However, they lack memory and context, which
limits their effectiveness in processing sequential data or data with temporal dependencies.

2. RNN (Recurrent Neural Network): RNNs are specialized for sequential data with temporal de-
pendencies. Unlike MLPs, RNNs have recurrent connections that allow information to persist
over time. This enables them to capture temporal dynamics and long-range dependencies in
sequential data, making them well-suited for tasks such as time series prediction, natural lan-
guage processing, and speech recognition. However, RNNs are susceptible to the vanishing

41



3.3 Interpolation and Neural Work

gradient problem, where gradients diminish exponentially as they propagate backward through
time, hindering their ability to learn long-term dependencies effectively.

If the data is static, then training with MLP is a reasonable choice, while the other model can serve as a
point of comparison. This allows for a comparison of the performance of different models on the same
dataset, thereby providing a more comprehensive evaluation of their effectiveness and suitability.

In addition, we used three different common activation functions in the MLP. The mathematical for-
mulas are as follows:

1. Rectified Linear Unit (ReLU) Activation Function:

f(x) = max(0, x)

2. Sigmoid Activation Function:
f(x) =

1

1 + e−x

3. Hyperbolic Tangent (tanh) Activation Function:

f(x) = tanh(x) =
ex − e−x

ex + e−x

Here’s a brief description of the characteristics of the three activation functions:
1. Rectified Linear Unit (ReLU) Activation Function: ReLU is a simple and efficient activation

function that outputs zero for negative input values and linearly increases for positive input
values. It overcomes the vanishing gradient problem and accelerates convergence by enabling
faster and more effective learning in deep neural networks. However, ReLU neurons can suffer
from the ”dying ReLU” problem, where they become inactive and output zero for all inputs,
leading to dead neurons in the network.

2. Sigmoid Activation Function: The sigmoid function squashes the input values between 0 and
1, making it suitable for binary classification tasks. However, it suffers from the vanishing
gradient problem, particularly for inputs far from zero, which can slow down learning in deep
neural networks.

3. Hyperbolic Tangent (tanh) Activation Function: Similar to the sigmoid function, the tanh func-
tion squashes the input values, but between -1 and 1. It provides stronger gradients compared
to the sigmoid, making it more suitable for training deep neural networks. However, like the
sigmoid, it also suffers from the vanishing gradient problem.
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Chapter 4 GAMES102: Geometry Modeling And
Processing

This chapter comes from GAMES102 Course, taught by Ligang Liu.

The homepage is listed: http://staff.ustc.edu.cn/~lgliu/Courses/GAMES102_2020/default.
html

4.1 Data Fitting
The main purpose is to find a function which fits the data. The input is some observed data, and the
output should be a funtion which can react to the information. We need to find:

1. function space,
2. which function in the space,
3. how to determine the function.

http://staff.ustc.edu.cn/~lgliu/Courses/GAMES102_2020/default.html
http://staff.ustc.edu.cn/~lgliu/Courses/GAMES102_2020/default.html
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