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Abstract

Based on various reports from the forefront of computer graph-
ics courses, the author has chosen ”3D Human Modeling” as the
reading direction. This document serves as a reading report on this
topic. First, it introduces the core ideas and some specific algo-
rithms used in famous parametric human models in historical order,
discussing their breakthroughs and limitations. The SCAPE, SMPL,
and STAR models are described in detail. Next, the report intro-
duces the relatively new implicit function methods, which are widely
used in 3D human reconstruction, showcasing the PIFu algorithm
and listing related works. Following that, it briefly discusses RGB-D
fusion methods, citing some classic works. Finally, a brief summary
is provided based on the author’s learning and course content.
Keywords: 3D human modeling, implicit function methods, fusion
methods
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1 Introduction
1.1 Why 3D Human Modeling is Needed
3D human modeling plays an indispensable role in various real-world fields.

In the medical field, 3D human modeling is widely used to create highly accurate anatomical
models, which are crucial for doctors to better understand human anatomy, plan surgical
procedures, diagnose diseases, and plan treatments. For example, doctors can use 3D human
models to simulate surgeries, predict surgical outcomes, and meticulously plan surgical paths,
thereby reducing surgical risks. Additionally, 3D human models are used in medical educa-
tion to help students gain a deeper understanding of human anatomy through visualization,
fostering more professionally skilled medical personnel.

In the entertainment and media industry, 3D human modeling also has great creative potential.
In film, television, and animation production, producers can use 3D human models to create
more vivid characters that interact and move in a realistic and natural way, providing a more
engaging viewing experience for audiences.

Virtual reality and game development are another significant application area. Through 3D
human modeling, game developers can create stunning virtual worlds, allowing players to fully
immerse themselves in the game. Players can control their virtual characters, interact with the
game world, and experience various scenarios and challenges. Moreover, 3D human modeling
can be used in virtual tour applications to guide users through landmarks, art museums, and
other places, offering a more immersive visual and auditory experience.

This technology provides a more realistic and interactive visual experience, enriching inno-
vation across various fields and creating more colorful real and virtual worlds. Through 3D
human modeling, we can map from reality to virtuality to gain deeper insights into ”how
humans interact with each other,” and map from virtuality to reality to apply the technology
in robotics to facilitate human life.

1.2 Challenges in 3D Human Modeling
Complex Geometry and Topological Changes. The shape and posture of the human
body are highly complex, involving the coordination of multiple joints, muscles, and tissues.
Capturing and representing such complex geometry and topological changes is a challenge.

Data Acquisition and Processing. Obtaining high-quality human data requires costly
scanning devices or sensors, and processing large volumes of data to build accurate models.
Data processing may involve issues such as noise, missing data, and data alignment.

Posture and Motion Variations. The human body can move in various postures and
actions, such as walking, running, and jumping. Building models that can accurately capture
these variations requires considering the impact of different postures and motions on the model.

Detail and Realism. In some applications, such as medical imaging and film production,
highly realistic human models are needed. To capture fine details, such as skin folds and
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muscle deformations, issues related to detail representation and realism need to be addressed.

Computational Efficiency and Real-time Performance. In real-time applications, such
as virtual reality and gaming, generating and rendering realistic human models within a short
time is required. Therefore, computational efficiency and real-time performance of the models
are a challenge.

Soft Tissue Simulation. In animation and virtual reality, simulating changes and defor-
mations of human soft tissues is also a challenge. Soft tissue simulation needs to consider
variations in muscles, fat, and their responses to posture and motion.

Diversity and Personalization. There are differences in human bodies across different
populations, such as gender, age, and body type. Constructing models that can adapt to
different human characteristics and personalized needs is a challenge.

Thus, the difficulties encountered in 3D human modeling are interdisciplinary and multi-
faceted, requiring comprehensive consideration of geometry, physics, computation, and per-
ception to achieve accurate, realistic, and real-time human models.

1.3 A Brief History of ”Virtual Humans”
This subsection discusses some previous works related to 3D human modeling, mostly enu-
merating previous works.

In 1882, two-dimensional images were used to record human motion trajectories, known as
”the earliest exploration.”

In 1973, key points and human skeletal mechanisms were introduced, constructing multiple
sets of key points for kinematic analysis.

In 1973, Nevatia & Binford proposed the ”generalized cylinders” algorithm, collecting a batch
of toy-based shape prototypes and successfully fitting range data to generate reconstruction
results. Similar tasks today only require laser rangefinders or radars, but such instruments
were not available at that time, making it a remarkable algorithm.

In 1978, Marr & Nishihara improved upon the previously mentioned algorithm and proposed
a general, composite structure algorithm capable of 3D reconstruction to approximate human
representation. This involved learning from prototype models with skeletal structures and
completing reconstructions.

In 1978, Marr & Nishihara introduced the dynamic joint tree, as shown in Figure 1. By
defining the root node’s position and angle (referred to as ”shape prototype” in the text) and
extending leaf nodes from the root node, the entire dynamic joint tree is defined by calculating
the relative positions and angular relationships between leaf nodes and parent nodes.

In 1983, David Hogg used computer programming software to extract image edges through
edge detection algorithms. Further analysis using predefined 3D human models revealed the
surface structure of the human body. This was the first application of manually defined 3D
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Figure 1: Dynamic Joint Tree

parametric human models. The author mathematically defined key human body parts and
set spatial priors to compute possible values for key parameters such as length, width, and
orientation.

In 1994, Rohr guided virtual humans to perform similar actions by recognizing human motion
in image sequences.

In 1997, S. Wachter & H.-H. Nagel used generative models to track human movement in
monocular image sequences.

In 1991, Alex Pentland explored optimization algorithms for virtual human reconstruction
under non-rigid conditions.

In 1993, D. Gavrila used posture prototypes to capture differences in body postures across
genders, modeling them separately and using multiple cameras for tracking to model virtual
humans in motion sequences.

In 1998, Bregler & Malik studied 3D body shapes and projected them into 2D to represent
human 2D motion states.

Additionally, there have been more refined studies, as follows:

In 1996, Baumberg and Hogg attempted to model 2D posture parameters. They represented
2D postures using contours and lines formed by points above, and improved the accuracy of
2D shapes by refining the contours. This modeling approach is known as ”Eigen-shapes.”

In 1999, Blanz & Vetter attempted 3D facial reconstruction. They used Principal Component
Analysis (PCA) to reconstruct facial shape and appearance spaces, and optimized methods to
calculate necessary parameters for 3D facial reconstruction, including shape, ambient lighting,
and pose.
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From 1999 to 2001, Cyberware used the Cyberware scanner to generate the CAESAR dataset,
which includes data from 2,000 males and females from Europe and the United States. This
dataset references 1990s US census data and considers key factors such as age, weight, and
height, making it authoritative.

In 2003, Allen et al. attempted to register baseline human templates to the CAESAR human
scan models to obtain a gender-independent universal human topology in the same refer-
ence coordinate system. After registration, various sub-templates that meet the requirements
can be generated by interpolating and deforming the ground truth template. However, the
generated animations appeared less realistic due to the absence of pose in the training.

For models that are more modern and of significant value, detailed introductions will be
provided later in this document.

1.4 Introduction
In this short-term course, Professor Tao Yu gave a report titled ”Human Performance Cap-
ture: From Deep Fusion to Deep Implicit Functions,” which introduced the history, modeling
process, optimization methods, and existing works of 3D human body modeling. Professor
Dongdong Weng gave a report titled ”Acquisition and Driving of High-Fidelity Digital Hu-
mans,” providing more information on 3D facial modeling. On the other hand, I felt that 3D
human body modeling is ubiquitous in life, including entertainment means such as movies and
games. Therefore, I chose ”3D Human Body Modeling” as the direction, read related works,
and formed this reading note.

This article first introduces the most basic and core issue of 3D human body modeling, namely
the parametric human model. I list important works in parametric human models: although
SCAPE was published in 2005, a long time ago, its method of decomposing body shape changes
into pose changes and body shape differences is the foundation of more modern parametric
models; SMPL is one of the most widely used models, some works in the third and fourth parts
still apply this model; the STAR model is the optimal version of the SMPL model now. In
addition to a relatively complete discussion of the algorithms proposed by these three models,
I also list more important works.

In the third part, this article introduces the implicit function method, which was first proposed
by PIFu in 2019, and many researchers have since conducted more in-depth exploration on it,
including Professor Yebin Liu’s team at Tsinghua University, which has also made many out-
standing contributions in this regard. This method is relatively new, focusing on human body
reconstruction, and was mentioned in Professor Tao Yu’s report, so I made some discussion
in this article.

The fourth part of this article briefly introduces related works on fusion methods based on
RGB-D input. I found that the author mentioned this method in 3.2.3Function4D, and by
consulting the data, I know that this method combines color images (RGB images) and depth
information (D images), thereby providing richer and more accurate data, supporting various
applications and tasks, and has significance in computer vision, computer graphics, and related
fields. Professor Tao Yu also mentioned topics related to Fusion, so I made some discussion
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in this article.

Finally, I recorded a few shallow discoveries during the reading.

2 Parametric Human Models
This part introduces the core ideas and some specific algorithms used in famous parametric
human models in chronological order, and discusses the breakthroughs and limitations of the
algorithms.

2.1 SCAPE
2.1.1 Introduction

The SCAPE method (Shape Completion and Animation for People) is a data-driven approach
that constructs a unified model for both pose and body shape. This method generates dense
full-body meshes and captures details of muscle deformation in various poses by learning
two different body change models: one for explaining pose changes and one for body shape
differences. The pose model’s dataset comes from dense 3D scans of a single person in multiple
poses. The pose model decomposes body deformations into rigid and non-rigid components,
with the rigid component described by a low-degree-of-freedom skeletal structure and the non-
rigid component capturing remaining deformations, such as muscle bends. In this model, body
part deformations depend only on adjacent joints, keeping the dimensions relatively low and
enabling automatic learning from limited training data.

The body shape model simulates body shape differences between different individuals. The
dataset is obtained from a set of 3D scans of different people in different poses. Body shape
differences are represented through Principal Component Analysis (PCA), constructing a low-
dimensional body deformation subspace. Importantly, the body shape model is not affected by
pose-induced deformations as these deformations are considered separately. Together, these
two parts form a unified framework of human shape variability, generating complete surface
meshes including the joint angles of the body skeleton and feature coefficients describing body
shape.

This model is applied in two important graphics tasks. Firstly, it is used for partial view
completion. In graphics-related applications, a complete surface model is often required for
rendering and animation processing, but it is difficult to obtain a complete surface model of
a person. Even in full-body scanners like Cyberware, surface data is still incomplete due to
potential occlusions by clothing, etc., in a static state. Most human scans have large missing
regions on the surface model. With this model, the best-fitting human shape for the observed
partial data can be found, and the complete 3D mesh can be predicted using the model. Since
the model also considers non-rigid pose differences, muscle deformations related to specific
poses can be predicted even for unobserved parts of the body.

Secondly, the model is used to generate complete 3D animations based on marked motion
data. Existing motion capture systems typically provide sparse measurements of a few surface
points. By inputting a sequence of extremely sparse data marked at limited locations on the
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body (usually between 50 and 60), this model can predict a complete 3D human shape for
each frame that matches the observed marker positions. Applying this technique to motion
capture data sequences can generate 3D animations of the full human body, thus constructing
high-quality, realistic muscle deformation animations for characters with only a single range
scan data.

This work was completed in 2005, but the proposed method is classic and of epoch-making
significance. This part references the paper by the SCAPE developers1.

2.1.2 Data Acquisition and Mesh Preprocessing

The SCAPE model is data-driven, and all shape information is obtained from a series of scans.
The basic process of data acquisition and mesh preprocessing is shown in Figure 2.

Figure 2: Basic process of SCAPE data acquisition and mesh preprocessing
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(a) Acquire two datasets covering shape changes caused by different body poses and different
body shapes.

(b) Manually map template mesh and scan some landmark points for each range.

(c) Apply related correspondence algorithms to compute a large number of additional land-
mark points.

(d) Use these landmark points as input for a non-rigid registration algorithm to generate fully
registered meshes.

(e) Apply a skeleton reconstruction algorithm to recover a joint skeleton from the registered
meshes.

(f) Learn the deformation space caused by poses and body shapes.

Below are some detailed introductions.

Scanning. Surface data was acquired using the Cyberware WBX whole-body scanner. The
scanner captured range scans from four directions simultaneously, resulting in models con-
taining approximately 200K points. The four scans were merged into a complete whole-body
instance mesh2, and the instance was sampled to include about 50,000 triangles3.

Following this process, two datasets can be obtained: a pose dataset containing scan data of
70 poses of specific individuals, and a body shape dataset containing scan data of 37 different
individuals in similar (but not identical) poses. The developers also added eight publicly
available models from the CAESAR dataset to the personal dataset4. One mesh from the pose
dataset was selected as the template mesh, and all other meshes were referred to as instance
meshes. The template mesh served as a reference for all other scans, and the developers used
the algorithm proposed by Davis et al.5 to fill holes in the template mesh. The template mesh
and some instance meshes are shown in Figure 2(a). In some of the images, the head regions
have been smoothed to conceal the identity of the scanned objects.

Correspondence Algorithms. The next step in data acquisition was to establish correspon-
dences between the template mesh and each instance mesh. Non-rigid registration algorithms
at that time required a set of corresponding landmark points between each instance mesh and
the template mesh. The developers used an algorithm called the Correlated Correspondence
(CC) algorithm to obtain these landmarks6. The CC algorithm consistently embeds each in-
stance mesh into the transformed template mesh and matches visually similar surface regions.
To break the symmetry of the scans, 4-10 landmarks were manually placed in each pair of
scans to initialize the CC algorithm. The result of the algorithm is approximately 140-200
(near) correspondences between the two surfaces, as shown in Figure 2(c).

Non-rigid Registration. Given a set of landmarks between two meshes, the goal is to
align the meshes closely while aligning the landmarks. The developers applied a standard
algorithm7 to register the template mesh with all meshes in the dataset, resulting in a set
of meshes with the same topological structure that closely approximates the surfaces in the
original Cyberware scans. Figure 2(d) shows some of these meshes.
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Joint Skeleton Recovery. The model uses a low-degree-of-freedom skeleton to simulate
joint movements. The developers automatically constructed the skeleton for the template
mesh using only the meshes from the dataset and then applied Anguelov’s algorithm8. This
algorithm leverages the fact that vertices on the same joint of the skeleton are spatially con-
tiguous and exhibit similar motions across different scans. Based on the pose dataset, the
algorithm automatically constructed a skeleton with 18 parts, with the groin and chest areas
divided into two symmetrical parts, resulting in a non-tree structure for the skeleton. For
convenience in pose editing, the developers combined these two parts into one, resulting in a
skeleton with 16 tree-like joints.

Data Format. The obtained dataset consists of a model mesh X and a set of instance meshes
Y = Y 1, · · · , Y N . The model mesh X = {VX , PX} has a set of vertices VX = x1, · · · , xM and a
set of triangles PX = p1, · · · , pP . Instance meshes come in two types: scans of the same person
in different poses and scans of different people in approximately the same poses (still multiple).
Through preprocessing, it is assumed that each instance mesh has the same set of points and
triangles as the model mesh. Let Y i = yi

1, · · · , yi
M be the set of points in the instance mesh

Y i, and let the absolute rotation set of the rigid part of each mesh Y i be Ri, where Ri
l is

the rotation of joint l in the instance mesh i. The data acquisition and preprocessing process
provides us with this type of data.

Pose Deformation.Sections 2.1.3 and 2.1.4 represent the core results of the model.

Deformation Process. For each mesh Yi in the dataset containing different poses of the
human body, modeling is performed. The pose deformation model targets each triangle pk

in the template. Considering the non-rigid and rigid components of the deformation, two
affine triangle transformations are used. Let the vertices of triangle pk be xk,1, xk,2, xk,3.
Translating point xk,1 to the global origin results in a local coordinate system for the triangle,
and based on this coordinate system, deformations are applied to the edges of the triangle
ˆvk,j = xk,j − xk,1, j = 2, 3.

First, a 3 × 3 linear transformation matrix Qi
k is applied to the triangle. This matrix corre-

sponds to the non-rigid component of the deformation induced by each triangle pk and each
pose Yi. Then, the deformed polygon is rotated once, i.e., rotated by the rotation Ri

l of the
rigid part of the joint skeleton, and the same rotation is applied to all triangles belonging to
that part. Let l[k] be the body part associated with triangle pk, then:

vi
k,j = Ri

l[k]Q
i
k ˆvk,j, ; j = 2, 3 (2.1)

A key feature of this model is that it combines deformation elements of the rigid skeleton
with elements allowing arbitrary local deformation, which is essential for modeling muscle
deformation.

Learning Pose Deformation Model. The following demonstrates how to model pose-
induced deformations using a set of matrices Qi

k, where pk is a triangle in the template mesh.
The goal is to predict these deformations from joint rotation matrices Rl1 and Rl2 that can be
represented as a set of relative joint rotations, where the relative joint rotation matrix can be
simply represented as RT

l1Rl2 .

Joint Rotation. Joint rotation is typically represented by torque. Suppose M is an arbitrary
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3 × 3 rotation matrix, and mij is its element in the i-th row and j-th column. The torque
of the joint angle is a three-dimensional vector, which can be computed using the following
formula:

t = ||θ||
2 sin ||θ||

m32 − m23
m13 − m31
m21 − m12

 . (2.2)

where θ = cos−1
(

tr(M) − 1
2

)
. (2.3)

The direction of the torque vector represents the rotation axis, and the magnitude of the
torque represents the rotation angle.

Each triangle pk learns a regression function that predicts the transformation matrix Qi
k based

on the torques of its two nearest joints, represented as ∆ri
l[k] = (∆ri

l[k],1, ∆ri
l[k],2). Assuming

that the matrix Qi
k can only be predicted by these two joints greatly reduces the dimensionality

of the learning problem.

Each joint rotation requires three parameters to represent, so ∆ri
l[k] has a total of six parame-

ters. When adding a constant bias term, we associate a 7 × 1 regression vector ak,lm with each
matrix value Q, defined as:

qi
k,lm = aT

k,lm ·
[
∆ri

l[k]
1

]
, l, m = 1, 2, 3. (2.4)

Thus, for each triangle pk, we need to fit 9 × 7 entries ak = (ak,lm : l, m = 1, 2, 3).

The goal now is to learn these parameters ak,lm. If we know the transformation matrix Qi
k

and the rigid part rotation Ri for each instance mesh Yi, it is straightforward to solve for
the regression values by minimizing a quadratic error function, computed separately for each
triangle k and matrix value qk,lm:

arg min
ak,lm

∑
i

(
[∆ri, 1]ak,lm − Qi

k,lm

)2
. (2.5)

In practice, the model size and computation can be reduced by identifying joints with only one
or two degrees of freedom. In some cases, allowing these joints to have three degrees of freedom
can lead to overfitting. Principal Component Analysis (PCA) is performed on the observed
angles of ∆ri to remove rotation axes with eigenvalues less than 0.1. The corresponding entries
in the vector ak,lm are not estimated.

As mentioned earlier, the rigid part rotations are computed in the preprocessing step. Un-
fortunately, the transformation matrix Qi

k for a single triangle is not known. Following the
method proposed by Sumner9, a smoothing constraint is introduced that favors similar defor-
mations in adjacent polygons belonging to the same rigid part. Specifically, for each mesh Y i,
solve the following equation to obtain the correct set of linear transformations:

arg min
Qi

1,··· ,Qi
P

∑
k

∑
j=2,3

||Ri
l[k]Q

i
k ˆvk,j − vi

k,j||2 + ws

∑
k1,k2

I(lk1 = lk2) · ||Qi
k1 − Qi

k2||2. (2.6)
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where ws = 0.001ρ, ρ is the resolution of the model mesh X, and I(·) is the indicator function.
This equation can be solved for each rigid part and each row of the Q matrix.

For the given estimated Q matrices, we can solve for the (at most) 9×7 regression parameters
ak for each triangle pk.

Application to Dataset. This method is applied to a dataset of 70 poses to learn the SCAPE
pose deformation model. Figure 3 shows an example. These examples do not correspond to
the meshes in the training dataset; they are entirely new poses synthesized based on joint
rotation vectors R, using equation (2.4) to define the Q matrices and generating the meshes
using equation (??).

Figure 3: Example of capturing muscle deformation in SCAPE pose models

The model captures shoulder deformation, biceps bulging, and spine twisting well, and per-
forms reasonably well in handling elbow and knee joints. Example (g) shows minor smoothing
of the elbow in some poses. Due to the hole filling in the template mesh, a defect appears in
the armpit area.

For a given matrix, generating each mesh takes about 1 second, which is 1.5 orders of magni-
tude slower than real-time, indicating the potential for using this type of model in real-time
animation synthesis or caching motion sequences.

2.1.3 Body Shape Deformation

The SCAPE model also encodes body shape differences among individuals, assuming that the
scan data in the training set Y i corresponds to different individuals.

Deformation Process. Body shape deformation is modeled independently of pose variations
by introducing a new set of linear transformation matrices Si

k, corresponding to each instance
mesh i and each triangle pk. Assume that the triangle pk observed in the instance mesh i is
obtained by first applying the pose deformation matrix Qi

k, then the body shape deformation
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matrix Si
k, and finally the rotation associated with the respective joint Ri

l[k]. The sequential
application of transformation matrices preserves the correct scaling of deformation. We obtain
the following extension of equation (2.1):

vi
k,j = Ri

l[k]S
i
kQi

k ˆvk,j. (2.7)

Thus, the body shape deformation associated with each subject i can be modeled as a set of
matrices Si = {Si

k : k = 1, · · · , P}.

Learning the Body Shape Deformation Model. To capture the body shape deformation
space, different matrices Si are viewed as part of a low-dimensional subspace. For each instance
mesh, we create a vector of size 9 × N containing the parameters of the matrix Si. Assuming
these vectors are generated by a simple linear subspace, they can be estimated using PCA:

Si = Uβi + µ. (2.8)

where Uβi +µ is the PCA reconstruction from the vector form of the 9×N matrix coefficients,
and Uβi + µ represents this vector as a set of matrices. PCA is suitable for modeling matrix
entries, as the deformations caused by body shape are consistent and not too strong; even
shapes differing from the mean by three standard deviations still appear very human-like, as
shown in Figure 4.

Figure 4: The first four principal components in the body shape deformation space
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If the affine matrices Si
k are known for each i and k, PCA parameters U , µ, and mesh-

specific coefficients βi can be solved. Similar to the pose deformation case, the body shape
transformation matrices Si

k are unknown and need to be estimated. To solve for Si
k:

arg min
Si

∑
k

∑
j=2,3

∥∥∥Ri
kSi

kQi
k ˆvk,j − vi

k,j

∥∥∥2
+ ws

∑
k1,k2

∥∥∥Si
k1 − Si

k2

∥∥∥2
. (2.9)

The data preprocessing phase provides estimates of the joint rotations Ri in each instance
mesh, allowing us to compute the joint angles ∆ri. From these angles, the predicted pose
deformations Qi

k can be calculated using the learned pose deformation model, so the only
unknown in equation (2.9) is the body shape transformation matrix Si

k. This equation is
quadratic in these unknowns and can be solved using least squares optimization.

Application to Dataset. This method was applied to a dataset of 45 body shape instances
to learn the SCAPE body shape deformation model. Figure 4 shows the first four principal
components of the body shape deformation space. These components represent reasonable
variations in weight and height, gender, abdominal fat and chest muscles, and chest-to-hip
fullness.

The PCA space covers a wide range of body shapes. Combined with the pose model, realistic
scans of various people in a wide range of poses can now be synthesized. Given a set of rigid
part rotations R and body shape parameters β, the joint rotations R determine the joint
angles ∆R. For a given triangle pk, the pose model now defines the deformation matrix Qk,
and the body shape model defines the deformation matrix Sk. Similar to equation (??), solve
for the vertices Y that minimize the objective function.

Using this method, meshes can be generated for any body shape in any pose within the PCA
space. Figure 5 shows some examples of different synthesized scans, demonstrating realistic
muscle deformations for very different subjects and a wide range of poses.

2.1.4 Application Example —Motion Capture Animation

This model can be applied to image completion; the algorithm is more complex, and we
reference the results of this algorithm to introduce another application.

The shape completion framework can be applied to generate animations from captured marker
motion sequences. In this case, there is a sequence of frames with some markers, each specifying
the 3D positions of these markers. Treat each frame’s observed set of markers as the input Z
to the image completion algorithm, and use the algorithm to generate a mesh. To generate
complete 3D animations, the mesh sequences from different frames can be connected.

It is worth noting that in many motion capture systems, markers protrude from the body,
leading to recovered meshes that may contain unrealistic deformations. Therefore, we do
not use the completed meshes Y [Z], but rather use the predicted meshes ˆY [Z]. Since these
meshes are constrained by the body shape encoded by the PCA model, they tend to avoid
these unrealistic deformations. This method was applied to two captured motion sequences,
both for the same subject S. It is worth noting that the dataset contains only a single scan of
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Figure 5: Examples of different synthesized scans

the same subject S, with poses as shown in the third row of Figure 2(a). Each frame in each
sequence used 56 markers distributed over the entire body. The subject S was scanned with
markers, and the scan results were used to establish correspondences between points on the
markers and the subject’s surface. The image completion algorithm was then applied to each
frame in the sequence. In each frame, the pose R estimated from the previous frame was used
as the starting point for optimization. The animation was generated from the sequence of
predicted scans ˆY [Zf ]. Figure 6 shows some results, with Figure 6(c) demonstrating realistic
muscle deformations for subject S, Figure 6(d) showing the transfer of motion to different
subjects in the dataset, and Figure 6(e) displaying the replacement of subjects in the motion
sequence.

2.1.5 Discussion of Limitations

The SCAPE model decouples the pose deformation model and the body shape deformation
model. This design choice greatly simplifies the mathematical expression, improves the model’s
identifiability from data, and allows for more efficient learning algorithms. However, it also
overlooks the strong correlation between body shape and muscle deformation. For example,
since everyone uses the same muscle deformation model, we do not capture that more muscled
individuals are likely to exhibit greater muscle deformations than others; conversely, muscle
deformation might be masked in individuals with higher body fat. Capturing these correlations
would require a more expressive model.

The current method requires a series of scans of the same person in different poses to learn
pose deformation data. Once this step is completed, scans of different people in different poses
can be used to learn body shape deformation data. Currently, there is no method provided
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Figure 6: Motion capture animation results demonstration

to learn both types of data from randomly combined data of different people and poses. The
assumption about the training set structure is not particularly strict, aiming to simplify data
collection and learning processes. One could attempt to learn the model from non-uniform
datasets by estimating pose or body shape models while keeping the other model fixed. This
process would lead to local minima in the deformation joint space, and the quality of this local
minimum depends on the given training data.

In the model, pose deformation is determined by linear regression of adjacent joint angles.
This assumption provides surprisingly good animation results and simplifies the shape com-
pleteness task. In many partial view completeness instances, a more accurate model may not
be needed, as the solutions provided above can deform beyond the SCAPE space to fit ob-
served surfaces. Thus, partial view data can correct some (relatively small) errors caused by
the linear regression model assumption. When the SCAPE model is used solely for animation,
a more complex model may be required in some cases, and nonlinear regression methods could
be considered.
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The SCAPE model focuses on representing muscle deformation caused by joint movements,
with other deformation factors not encoded, one of which is deformation due to pure muscle
activity. Thus, the model cannot distinguish between flexed biceps and relaxed biceps when
joint angles are the same. Another factor causing muscle deformation is tissue disturbance
due to movement (e.g., fat jiggle), which is also not represented by this model.

Finally, the method is purely data-driven, generating the entire model from a set of scanned
data. Only a small set of markers needs to be placed on the scans to serve as a registration
starting point, requiring manual intervention. Therefore, this model can be easily applied to
other datasets and is capable of generating models suitable for specific types of body shapes
or poses. If the data and desired animations are known, a method for fine-tuning model
parameters to meet specific requirements would further benefit the approach.

2.2 SMPL
2.2.1 Introduction

The SMPL (Skinned Multi-Person Linear) model can realistically represent a wide range of
body types, naturally exhibit motion variations, demonstrate soft tissue dynamics, efficiently
generate animations, and is compatible with existing rendering engines. Figure 7 shows some
examples of its work.

Figure 7: Examples of SMPL’s work

Traditional methods model how vertices match with the underlying skeletal structure. LBS
(Linear Blend Skinning) models are the most widely used, supporting all game engines and
providing high rendering efficiency. However, they produce unrealistic deformations at joints,
including ”taffy” and ”bowtie” effects, as shown in Figure 8. A lot of work is being done
to improve such effects101112. Much work has also been done on learning highly realistic hu-
man models from data1314. These methods capture many body shapes and their non-rigid
deformations due to posture, with the most realistic methods based on triangle deformations
(discussed in Section 2.1). Despite these efforts, previous models still had many shortcom-
ings, such as lack of realism, incompatibility with existing packages, inability to represent a
wide variety of body shapes, incompatibility with standard graphics pipelines, or requiring
significant manual labor.
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Figure 8: Examples of ”taffy” and ”bowtie” effects

Compared to previous methods (which were developed in 2015 and continue to be updated),
a key goal of the developers’ work was to make the body model as simple and standardized
as possible to ensure its wide usability while maintaining the realism of deformation models
learned from data. Specifically, they aimed to learn blend shapes to correct the limitations
of standard skinning1, combining different blend shapes for identity, pose, and soft tissue
dynamics with a static template before applying blended skinning transformations. A key
component of the SPML method is the use of linear functions of parts of rotation matrix
elements to model pose blend shapes. This method, different from previous methods, simplifies
training and blending shape animation. Since rotation matrix elements are bounded, the
resulting deformations are also bounded, which helps the model generalize better.

The model includes a loss function that penalizes inconsistencies between each vertex of the
registered mesh and the model, enabling the model to be trained on data. To understand
how people deform with poses, the model uses high-resolution 3D scan data of 1786 different
objects in various poses. The developers aligned the template mesh with each scan to create
the training set; optimized blend weights, pose-dependent blend shapes, rest poses, and shape-
to-joint position regressions to minimize vertex errors on the training set. The joint regressor
predicts joint positions as a function of body shape and is crucial for animating realistic pose-
related deformations for any body type. All parameters are automatically estimated from
aligned scans.

The model learns linear models of male and female body types from the CAESAR dataset,
first aligning the template mesh to each scan and normalizing the poses, which is crucial when
learning vertex-based shape models. The resulting principal components become the body

1Skinning Transformation: A concept in computer graphics and animation used to describe the process of
associating the surface of a 3D model with a skeletal structure. This is common in character animation and
game development to make the 3D model appear more natural during movement.
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shape blend shapes. The developers trained SMPL (Skinned Multi-Person Linear) models in
various forms and performed quantitative comparisons with BlendSCAPE models15 trained
with the exact same data. They quantitatively evaluated these models with animations and
meshes not used for training, fitting SMPL and BlendSCAPE to these meshes, and comparing
vertex errors. They then explored two main variants of SMPL, one using linear blend skinning
(LBS) and the other using dual quaternion blend skinning (DQBS). The conclusion was that
vertex-based skinning models like SMPL are actually more accurate than deformation-based
models like BlendSCAPE, which were trained with the same data.

The developers extended the SMPL model to capture soft tissue dynamics by adapting the
Dyna model16, resulting in the Dynamic-SMPL, or DMPL model. DMPL was trained on
the same 4D mesh dataset used by Dyna. However, DMPL is based on vertex deformations
rather than triangle deformations. The developers calculated vertex errors between SMPL and
Dyna training meshes in a static pose, used PCA for dimensionality reduction, and generated
dynamic blend shapes. They then trained a soft tissue model similar to Dyna’s approach,
based on partial angular velocity, acceleration, and dynamic deformation history. Since soft
tissue dynamics largely depend on body type, DMPL was trained using bodies with different
body mass indices, learning a body-type-dependent dynamic deformation model. In standard
rendering engines, soft tissue dynamics can be animated simply by calculating dynamic linear
blend shape coefficients for a range of poses. When comparing animations of Dyna and
DMPL side by side, DMPL appears more realistic. This extension of SMPL demonstrates the
versatility of additive blend shape methods, how deformations depend on body type, and how
this method provides a scalable basis for modeling body types.

With standard rendering engines, the animation speed of the SMPL model on a CPU is far
from real-time. Thus, SMPL addresses a longstanding issue in the field; it allows animators to
access a realistically learned model. The design of the SMPL base template considers anima-
tion production; it features a low polygon count, simple vertex topology, clear quadrilateral
structure, standard binding skeleton, and reasonable facial and hand details. On the other
hand, SMPL can be represented as Autodesk Filmbox (FBX) files, which can be imported
into animation systems and operated in Maya, Blender, Unreal Engine, and Unity.

This section references the paper by the SMPL developers17.

2.2.2 Model Construction

The SMPL model is illustrated in Figure 9. Similar to SCAPE, the SMPL model decomposes
body shape into shape components related to body type and non-rigid poses. Unlike SCAPE,
SMPL uses a vertex-based skinning approach and modified blend shapes. A single blend
shape is represented as an offset vector connecting vertices. Starting with a created mesh
with N=6890 vertices and K=23 joints, the mesh has the same topology, spatial resolution,
clear quadrilateral structure, part segmentation, initial blend weights, and skeletal structure
for both male and female bodies. The part segmentation and initial blend weights are shown
in Figure 10.

The standard SMPL model contains three main parts:

• Base Template: This is a static body model template for male and female bodies. It
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Figure 9: SMPL Model Example

Figure 10: Part Segmentation and Initial Blend Weights

consists of a low polygon count, simple vertex topology, clear quadrilateral structure,
standard binding skeleton, and reasonable facial and hand details. It provides a basis
for modeling body shape and pose. The standard SMPL model uses this base template
to represent different body types.

• Blend Shapes: SMPL uses blend shapes to correct the limitations of standard skinning
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models. Blend shapes are learned from data to address issues like ”taffy” and ”bowtie”
effects. Each blend shape represents a deformation offset relative to the base template.

• Pose-Dependent Deformations: SMPL models pose-dependent deformations by
combining blend shapes with static templates before applying blended skinning trans-
formations. The model learns pose-specific deformations from data and uses rotation
matrix elements to model these deformations.

Figure 11: Conceptual Introduction to SMPL Basic Algorithm

However, this does not solve all the problems. The results from scanning devices are point
clouds with unordered points, so parametric models cannot be used directly. To enable the
SMPL model to work with point cloud results, it is necessary to register based on a common
human template. The goal is to align (also known as register) the scanned point clouds so
that they are ordered and correspond to the model. The alignment process of point clouds
and the model is shown in Figure 12.

There are many challenges in the alignment step, such as:

1. The generated scanning point clouds are generally high resolution, but the corresponding
template is often not, due to computational resource limitations, leading to mismatches.

2. Smooth areas have less edge information, and points on smooth areas may match with
adjacent regions, causing errors.

3. Pose diversity, contact between adjacent areas, and missing data in the point cloud all
affect the accuracy of alignment.

To address these issues, a collaborative alignment algorithm18 was introduced. This algorithm
improves alignment accuracy by learning a precise prediction model and using better registra-
tion results to enhance prediction accuracy. To enhance model stability, the algorithm also
searches for global poses and uses prior poses in model optimization.
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Figure 12: Alignment Process of Point Clouds (Blue) with Model (Red)

After solving the alignment issue, we consider dimensionality reduction for the registered
template. The template has 21,000 points, which is too high for feature dimensions, leading
to insufficient computational resources and poor model learning. Therefore, it is necessary to
reduce the dimensionality of the ground truth. It should be noted that pose normalization has
already been done, so pose effects on shape do not need to be considered again. Dimensionality
reduction is performed using Principal Component Analysis (PCA). First, normalize the shape
(subtract the shape mean after vectorizing each vertex) to place the shape in Euclidean space,
then apply PCA for dimensionality reduction. Typically, feature dimensions between 10 and
300 are used; larger dimensions retain more details. For SMPL models, a value of 10 is
generally considered, as it retains about 93% of the information, which is sufficient for standard
precision modeling. The information content for different values is shown in Figure 13.

After shape modeling, we further discuss standard skinning. Standard skinning is a common
modeling technique used in animation, which uses static vertex positions, joint positions, and
blend weights2 to generate the skinning of the human body. The definition of parameters is
shown in Figure 14.

Linear Blend Skinning (LBS) assumes that the process of transforming body poses from static
poses is a combination of vertex changes influenced by the pose. Given static vertices, after
applying pose adjustments, the vertices transform into the body shape for the given pose, sim-
plifying the model to a linear combination of specific vertices. Although linear blend skinning
is simple and easy to understand, it has obvious problems, such as failing to maintain volume
conservation, leading to deformations. For example, using LBS on vertices near the elbow can
result in elbow collapse (Candy Wrapper effect). This effect occurs due to insufficient vertex
constraints from direct pose transformations. The solution is to learn blend shapes. Blend

2Blend weight: The W matrix, usually describes the influence of multiple bones on vertices in a mesh
model, specifying the degree of influence of each bone on the vertices and thus determining the deformation
of the vertices in the animation. Blend weights are typically represented as a set of weight values, each
corresponding to an associated bone, and these weights are used to compute the final position of vertices
under bone transformations. By adjusting blend weights, animators can precisely control each bone’s effect
on the model, achieving more natural and smooth animation effects.
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Figure 13: Information Content for Different Feature Dimensions of SMPL Model

Figure 14: Definition of Parameters in SMPL Model

shapes are displacement vectors of vertices under static poses, ensuring volume conservation.
Based on this, the core algorithm of the SMPL model was proposed, as shown in Figure 15.

In Figure 15, human body modeling is represented in terms of principal vertices, determined
by static pose vertices T , pose-influenced vertex displacement Bp(θ̄), and shape-influenced
vertex displacement. First, we discuss pose-influenced vertex displacement. Pose-influenced
vertex displacement is determined by the pose vector (to be learned) and the pose weight
vector. The pose weights are optimized using the following operations:

1. Pose Correction: The edges of the registered template after pose projection should match
those of the average human pose template. Optimization is performed with this as the
target:

arg min
θ̄

∑
e

||We(T̂µ

P
+ BP (θ̄; P), T̂µ

P
, θ̄, W ) − V S

j,e||2. (2.10)
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(a) Differences between SMPL Model-
ing and Standard Skinning

(b) Parametric Modeling Formulas

Figure 15: Core Algorithm of SMPL

2. Fixing the pose, correct the average human pose template: The vertices of the registered
template after pose projection should match those of the average human pose template.
Optimization is performed with this as the target:

T̂j

S
= arg min

T̂
||W (T̂ + BP (θ̄j; P), J T̂ , θ̄j, W ) − V S

j ||2. (2.11)

Additionally, the influence of vertices must be considered. Controlling only the pose influence
allows for applying different actions without distortion, but does not account for shape defor-
mation. Key point modeling must also be considered. Key point modeling can be expressed
as a weight vector composed of the static pose vertices T multiplied by the joint weight func-
tion. After incorporating the above factors affecting the body shape, the final SMPL additive
formula can be obtained, as shown in Figure 16.

(a) SMPL Additive Formula (b) SMPL Key Parameters

Figure 16: SMPL Additive Formula and Key Parameters

2.2.3 Model Training

Figure 17 illustrates the training methods for each parameter. Figure 18, sourced from the
original paper, shows the shaping of mixed shapes.
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Figure 17: Training Methods for SMPL Parameters

Figure 18: Shaping of Mixed Shapes in SMPL

2.2.4 Model Evaluation

The developers evaluated the SMPL model from five dimensions: quantitative evaluation,
sparsity, visual quality, runtime, and compatibility with rendering engines, demonstrating its
superiority over the SCAPE model. The model evaluation link provided in the paper is:
http://smpl.is.tue.mpg.de.

2.2.5 Introduction to DMPL

Although the SMPL model can model static soft tissue deformation through poses, it cannot
simulate dynamic deformations due to body movement and collisions with the ground. Con-
sidering 4D registration data that includes soft tissue dynamics, the pose and personalized
template shape of the SMPL model are optimized. Displacements between the SMPL model
and the observed mesh correspond to dynamic soft tissue movement. To model these, a set of
new additional mixed shapes, termed dynamic mixed shapes, is introduced. These additional
displacements are related to the body’s and limbs’ velocities and accelerations, and not to
poses. Following the approach of Dyna19, the same training data is used, and these ideas are
applied to an additional vertex-based model, resulting in the DMPL model, which produces
more realistic soft tissue dynamics compared to Dyna.
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2.2.6 Discussion of Limitations

The pose-related offsets in SMPL are independent of body shape. SMPL works well without
this limitation, but modeling unrealistic characters with significantly different body part scales,
or including human spaces like infants and adults, might not be effective with traditional
methods. This limitation can be addressed by training a more general function. Since dynamic
mixed shape coefficients do depend on body shape, pose mixed shapes should similarly be
adaptable. This will not significantly complicate the model or runtime behavior, but may
require more training data.

The SMPL model is solely a function of joint angles and shape parameters: it does not simulate
breathing, facial movements, muscle tension, or any changes unrelated to skeletal joint angles
and overall shape. If appropriate decomposed data is available, these aspects might be learned
as additional mixed shapes (such as DMPL)20.

2.3 STAR
The STAR model is an upgraded version of the SMPL model, proposed in 2020, which can
directly replace the SMPL model. This section refers to the paper by the STAR developers21.

The paper first points out some drawbacks of the SMPL model, supplementing section 2.2.6:

SMPL enhances traditional linear blend skinning (LBS) by learning pose-related correction
offsets from 3D scans. Specifically, SMPL uses pose-corrected mixed shape functions P(θ):
R|θ| → R3N , where N is the number of mesh vertices. The function P predicts correction
offsets for each mesh vertex to ensure that the output mesh looks realistic when posed. It
can be viewed as a fully connected layer (FC) that associates correction offsets for each mesh
vertex with elements of rotation matrices for all body joints. This dense mixed shape formula
has several drawbacks. Firstly, it significantly increases the number of model parameters,
exceeding 4.2 million, making SMPL prone to overfitting during training. Even with extensive
regularization, the model may learn spurious correlations in the training set, as shown in
Figure 19(a), where moving one elbow causes another elbow to bulge. This is problematic for
graphics, model fitting, and deep learning, as dense formulas lead to dense spurious gradients
propagating through the model, and mesh surface loss will backpropagate false gradients to
geographically distant joints. Existing pose-corrected mixed shape formulas limit the model’s
compactness and visual realism.

SMPL distinguishes between shape changes caused by body shape and those caused by pose:
this is advantageous as it produces a simple model with additive shape functions; however, it
is a weakness as it fails to capture the correlation between body shape and how soft tissues
deform with pose.

To address Issue 1 mentioned, the developers created a new compact human model called
STAR (Sparse Trained Articulated Regressor). Compared to SMPL, the STAR model is
more accurate and features sparse and spatially localized blend shapes, meaning that a joint
affects only a group of sparse vertices geographically close to it. The original SMPL paper
also acknowledged this issue and proposed a model called SMPL-LBS-Sparse, which restricts
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Figure 19: Limitations of SMPL as highlighted in the STAR paper

pose-corrected blend shapes so that a vertex is influenced only by the joint with the highest
skinning weight. However, SMPL-LBS-Sparse has lower accuracy compared to SMPL.

To address Issue 2 mentioned, the developers extended the existing pose correction formula
by regressing correction terms using body pose θ and shape β. Here, the second principal
component of the body shape space, which is highly correlated with body mass index (BMI),
is used.

The core consideration of the STAR model is that the influence of body joints should be
inferred from training data. The main challenge is to devise a model and training objective
to learn meaningful joint support regions that are sparse and spatially localized, as shown in
Figure 20. To achieve this, the developers formalized a differentiable threshold function based
on a rectified linear unit (ReLU) operator, which learns to predict the activation of irrelevant
vertices in the model as zero. The output activations are used to mask the joint blend shape
regressor output, affecting only vertices with non-zero activations. This results in a sparse
pose-related deformation model.

The STAR model further enhances model compactness. SMPL uses Rodrigues’ representation
for joint angles3, applying a separate pose correction regressor for each matrix element, with
nine regressors per joint. The developers switched to quaternion representation, requiring
only four numbers per joint without losing performance. Combined with sparsity, this means
that STAR’s parameters are only 20% of those of SMPL. The developers assessed STAR’s
performance by training it on different datasets: STAR was found to be more accurate than
SMPL when trained on the same data, preserving test data accuracy better.

3Rodrigues’ representation: A mathematical method for representing rotations. It represents three-
dimensional rotation as a combination of an axis vector and a rotation angle. This representation facilitates
rotation operations and is widely used in computer graphics, computer vision, and robotics.
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Figure 20: STAR Sparse Local Pose Correction

Improvements in datasets are also addressed. The SMPL shape space was trained using the
CAESAR database, which contains 1,700 male and 2,107 female subjects. However, the body
data in the CAESAR database is distributed according to the 1990 US population distribution
and does not reflect current global body statistics. The SMPL trained on CAESAR cannot
capture recent and more diverse variations in the SizeUSA dataset, which includes 10,000
subjects (2,845 males and 6,436 females). To address these issues, the developers combined
CAESAR and SizeUSA scan data to train the STAR model, allowing STAR to generalize
better to unseen body shapes.

Figure 21 demonstrates STAR’s superiority over SMPL in various applications.

2.4 Summary of Other Works
This section primarily refers to the abstracts of related model papers. Among them, Video
Avatar uses optimization-based methods, while HMR, Octopus, GHUM, GHUML, and HPS
use learning-based methods.
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Figure 21: STAR’s Superiority over SMPL in Applications

2.4.1 SMPL Series

The SMPL series includes several models based on the SMPL model, such as ”SMPL-X” and
”SMPL+H.” Differences between these models are shown in Figure 2222.

Figure 22: SMPL Family and Differences

2.4.2 HMR

This model was proposed and published in 2018. HMR (Human Mesh Recovery) is an end-
to-end framework that can reconstruct a complete 3D human mesh from a single RGB image.
Unlike most current methods that compute 2D or 3D joint positions, this model generates a
richer and more useful mesh representation parameterized by shape and 3D joint angles. The
main objective is to minimize the projection loss of keypoints, allowing the model to be trained
on images captured in the wild. However, standalone projection loss is highly unconstrained.
To address this, the work introduces an adversarial network that uses a large 3D human mesh
database to determine whether the human parameters are realistic.23
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2.4.3 Video Avatar

This model was proposed and published in 2018. It addresses how to obtain accurate 3D human
models and textures from a monocular video of a person in motion. Based on parameterized
human models, the developers propose a robust processing pipeline that enables 5mm precision
3D model fitting for clothed individuals. The main contribution is a non-rigid deformation
corresponding to dynamic human contours, resulting in a visual shell in a common reference
coordinate system, thus enabling surface reconstruction. This allows efficient estimation of
consistent 3D shapes, textures, and embedded animation skeletons based on a large number
of frames.24

2.4.4 Octopus

This model was proposed and published in 2019. Octopus is a learning-based model that
can infer personalized 3D shapes of people from a small number of frames (1-8 frames) of a
monocular video. The individuals in the video are moving, and the reconstruction accuracy is
4 to 5 millimeters, which is several orders of magnitude faster than previous methods. By using
semantic segmentation images, the Octopus model can reconstruct 3D shapes, including SMPL
parameters, clothing, and hair, in less than 10 seconds. The model achieves rapid and accurate
predictions based on two key design choices: first, learning to encode the person’s image into a
pose-invariant latent code by predicting shapes in a canonical T-pose space; second, predicting
with bottom-up and top-down flows (one flow per view) based on feedforward predictions,
which are usually fast but not always aligned with the input images, allowing information to
flow bidirectionally.25

2.4.5 GHUM and GHUML

This model was proposed and published in 2020. The developers proposed a statistical, articu-
lated 3D human shape modeling pipeline embedded in a fully trainable, modular deep learning
framework. This framework uses high-resolution complete 3D body scan data that captures
human shapes in various poses, as well as close-ups of head and facial expressions, and hand
joint motions. All model parameters are trained together in a single, consistent learning loop,
including a variational autoencoder-based nonlinear shape space, pose space deformation cor-
rection, bone joint center predictor, and mixed skinning functions. These models are trained
with all 3D dynamic scan data simultaneously to capture correlations and ensure consistency
across components. The model supports facial expression analysis and body (including de-
tailed hand) shape and pose estimation. The developers provide two fully trained generic
human models with different resolutions: the medium-resolution GHUM model, with 10,168
vertices; and the low-resolution GHUML model, with 3,194 vertices.26

2.4.6 Dyna

This model was proposed and published in 2021. To make digital full-body virtual characters
look like real people, they need to exhibit soft tissue deformations similar to those of real
humans. However, methods for soft tissue physical simulation lack realism, are computation-
ally expensive, or are difficult to adjust. Learning soft tissue motion from instances is limited
by the lack of dense, high-resolution training data. To address this problem, Dyna uses a 4D
capture system and a method to accurately register time-varying 3D scans to a template mesh.
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By analyzing over 40,000 scans from ten subjects, the soft tissue motion causing deformations
in the mesh triangles relative to the base 3D body model is computed, and a low-dimensional
linear subspace approximating this soft tissue deformation is learned.

Dyna associates these linear coefficients of body surface deformation with body pose variations
and learns a second-order autoregressive model to predict soft tissue deformation based on
previous deformations, body velocity and acceleration, and limb angular velocity and acceler-
ation. Dyna also simulates how deformations change with body mass index (BMI), producing
different deformation effects for different body shapes, thereby realistically representing soft
tissue dynamics for previously unseen subjects and motions. Finally, the developers provide
tools for animators to vary BMI to produce different effects, selectively control the position
and intensity of soft tissue movements, and apply the model to new, stylized characters.27

2.4.7 HPS

This model was proposed and published in 2021. HPS (Human Pose and Location Estimation)
jointly estimates the complete 3D human pose and location of a subject in large 3D scenes
using only wearable sensors. The developers use IMU4 data to obtain an approximate 3D
body pose, and use a head-mounted camera for self-localization to determine the subject’s
position in the 3D scene; then, approximate body pose, camera position and orientation, and
3D scene are jointly optimized to obtain the final pose and location estimates.28

3 Pixel-Aligned Implicit Function Methods
This section introduces some works on 3D human reconstruction using implicit functions,
specifically focusing on the pioneering PIFU model and its specific algorithms, as well as a
series of derived works.

3.1 PIFu
3.1.1 Introduction

If digitizing an entire 3D object were as simple as taking a photo, there would be no need for
complex 3D scanning devices, multi-view stereo algorithms, or cumbersome capture processes
that require moving sensors to different positions. For certain types of objects, such as faces,
human bodies, or known man-made objects, it is already possible to infer relatively accurate
3D surfaces from images using parametric models, data-driven techniques, or deep neural
networks. Advances in 3D deep learning around 2019 showed that general shapes can be
inferred from very few images or even a single input. However, due to inefficient model
representations, the resolution and accuracy of results are often limited, even for specific-
domain modeling tasks.

To address this challenging issue, a novel pixel-aligned implicit function PIFU (Pixel-Aligned
Implicit Function) representation was proposed, which infers the textured surface of dressed

4IMU: IMU stands for Inertial Measurement Unit, a device that integrates multiple inertial sensors to
measure an object’s acceleration, angular velocity, and direction. IMUs typically include accelerometers,
gyroscopes, and magnetometers.
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3D human bodies from a single or multiple input images. Although most successful 2D image
processing deep learning methods (such as semantic segmentation29, 2D joint detection30, etc.)
utilize ”fully convolutional” network architectures to maintain spatial alignment between the
image and the output, this is challenging in 3D. Although voxel representations5 can be applied
in a fully convolutional manner, their inherently memory-intensive nature limits their ability
to produce finely detailed surfaces. Global representation-based inference techniques3132 are
more memory-efficient but cannot ensure that details from input images are preserved. Implicit
function-based methods333435 rely on the global context of images to infer overall shapes, which
may not be accurately aligned with the input images. PIFU aligns local features with the global
context of the entire object at the pixel level using fully convolutional methods, avoiding the
high memory usage associated with voxel representations, which is particularly important for
3D human reconstruction from single or multiple images.

3.1.2 Detailed Explanation

Specifically, the developers trained an encoder to learn independent feature vectors for each
pixel in the image. Given this per-pixel feature vector and a specified z-depth on the camera
ray originating from that pixel, the model learns an implicit function that can classify whether
a 3D point corresponding to that z-depth is inside or outside the surface. The key aspect is
that the feature vectors spatially align the global 3D surface shape with the pixels, enabling
the model to retain local details from the input image while inferring reasonable details in
unseen regions.

An end-to-end and unified digitization method can directly predict high-resolution 3D shapes
of people with complex hairstyles and wearing arbitrary clothing. Despite the presence of large
unseen areas, especially in the case of single-view input, this method can generate models
similar to those obtained from multi-view stereo or other 3D scanning techniques. As shown
in Figure 25, the algorithm can handle various complex garments such as dresses, scarves,
and even high heels, while capturing high-frequency details like wrinkles that match the input
image at the pixel level.

By simply regressing the RGB values of each query point along the rays using an implicit
function, PIFu naturally extends to inferring the color of each vertex. The developers’ digiti-
zation framework also generates complete textures for the surface while predicting reasonable
appearance details in unseen regions. With additional multi-view stereo constraints, PIFu
can naturally extend to handling multiple input images, which is often necessary in practical
human capture environments. Since a complete textured mesh can already be generated from
a single input image, adding more views further improves the results by providing additional
information for unseen areas.

This work was completed by the USC Lihao team and was accepted as an Oral presentation
at ICCV 2019. This section references the developers’ paper36.

5Voxel Representation: A representation that divides 3D space into cubic grids (voxels) to represent an
object’s 3D shape and structure. Similar to pixels in 2D images, voxels are elements in 3D space that can
contain information about the object’s properties (such as color, material) and spatial position.
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Figure 23: PIFu Algorithm

3.1.3 Pixel-Aligned Implicit Function

An Implicit Function is a function used to represent the surface of an object, typically in the
form F (X) = 0, where X represents any point on the surface. The relationship between F
and 0 determines the position of the point relative to the surface: equality indicates the point
is on the surface, while greater or lesser values may indicate that the point is inside or outside
the surface. The Pixel-Aligned Implicit Function proposed in the PIFu method incorporates
pixels from 2D images, hence the name Pixel-Aligned. Its function form is as follows:

f(F (x), Z(X)) = s. (3.1)

where s ∈ R, x = π(X) represents the projection position of the 3D point X in the 2D image,
and Z(X) represents the depth value of X in the camera coordinate system of this 2D image.
F (X) = g(I(x)) represents the feature vector learned from the depth of the 2D image at x,
with g(·) consisting of a fully convolutional network.

The function of the Pixel-Aligned Implicit Function is to determine whether a given 3D point
Xi is on the surface of an object. First, the 3D point is projected according to camera
parameters6 to obtain the 2D point position xi and the depth di under the camera. At the
same time, the image feature vector vxi

at this 2D point location is found. PIFu outputs
f(vxi

, di) to indicate whether the point is on the object’s surface.

The effectiveness of the Pixel-Aligned Implicit Function hinges on the pixel-aligned image
6Camera Parameter Projection: The process of projecting a point in the 3D world onto a 2D image plane,

mapping the position of the 3D object onto the 2D image. Camera parameters include a set of camera-related
information, such as internal parameters (e.g., focal length, principal point) and external parameters (e.g.,
camera position and orientation). These parameters determine the camera’s perspective and imaging method.
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feature vectors, allowing the learned f(·) to preserve some details presented in the image, such
as wrinkles in clothing, within the reconstructed model. Additionally, the continuous nature
of the Pixel-Aligned Implicit Function allows for the reconstruction of geometric information
with any topology in a memory-efficient manner.

The Pixel-Aligned Implicit Function also has good extensibility. For example, without chang-
ing the function input information, the output can be altered as follows:

f(F (x), Z(X)) = rgb. (3.2)

where rgb ∈ R3, allowing for color prediction. Figure 26 provides an overview of the PIFu
framework.

Figure 24: Overview of the PIFu Framework

3.1.4 Single-View Surface Reconstruction

Due to the complex topology of the human body, it is difficult to find an Implicit Function
that can be expressed with a formula. We only have some discrete observation points, such
as a point inside the body and another point outside the body. Therefore, in PIFu, the GT
Implicit Function is expressed as follows:

f ∗
v (X) =

{
1, if X is inside the mesh surface.

0, otherwise.
(3.3)

Specifically, the developers trained an encoder to learn an independent feature vector for each
pixel in the image. Given this per-pixel feature vector and the specified z-depth on the camera
ray originating from that pixel, they learned an implicit function that can classify whether a

34



3D point corresponding to that z-depth is inside or outside the surface. The key is that the
feature vectors spatially align the global 3D surface shape with the pixels, allowing the model
to preserve local details from the input image while inferring reasonable details in unseen
regions.

The end-to-end and unified digitization approach can directly predict high-resolution 3D
shapes of people with complex hairstyles and any clothing. Despite the presence of large
unseen areas, especially in single-view input cases, the method can generate complete models
similar to those obtained from multi-view stereo or other 3D scanning techniques. As shown
in Figure 25, the algorithm can handle various complex clothing, such as dresses, scarves,
and even high heels, while capturing high-frequency details like wrinkles that match the input
image at the pixel level.

Figure 25: PIFu Algorithm

By simply using the implicit function to regress the RGB values of each query point along
the ray, PIFu can naturally extend to inferring the color of each vertex. The digitization
framework developed by the authors also generates complete surface textures while predicting
reasonable appearance details in unseen areas. With additional multi-view stereo constraints,
PIFu can also naturally extend to handling multiple input images, which is often necessary
in practical human capture environments. Since complete textured meshes can already be
generated from a single input image, adding more views will only further improve the results
by providing additional information for unseen regions.

This work was completed by the USC Lihao team and was accepted as an oral presentation
at ICCV 2019. This section references the developers’ paper37.

35



3.1.5 Pixel-Aligned Implicit Function

An Implicit Function is a function used to express the surface of an object in the form:
F (X) = 0, where X represents any point on the surface. The relation between F and 0
determines the position of the point relative to the surface: equality indicates the point is
on the surface, while greater or lesser values could indicate the point is inside or outside the
surface. The Pixel-Aligned Implicit Function proposed in the PIFu method introduces pixels
from the 2D image, hence the term ”Pixel-Aligned.” Its function form is as follows:

f(F (x), Z(X)) = s. (3.4)

where s ∈ R, x = π(X) represents the projection position of the 3D point X on the 2D image,
and Z(X) represents the depth value of X in the 2D image’s camera coordinate system.
F (X) = g(I(x)) denotes the deep learning feature vector at x in the 2D image, with g(·)
composed of a fully convolutional network.

The function of the Pixel-Aligned Implicit Function is to determine whether any 3D point Xi is
inside or outside the object’s surface. First, project the point based on the camera parameters
to obtain its 2D point position xi and depth di in that camera. Then, find the image feature
vector vxi

at the 2D point position, and PIFu outputs f(vxi
, di) to indicate whether the point

is on the object’s surface.

The effectiveness of the Pixel-Aligned Implicit Function relies on the pixel-aligned image fea-
ture vectors, which allows the learned f(·) to preserve details from the image, such as wrinkles
on clothing. Additionally, this continuity inherently allows for reconstructing geometrical
information of any topology in a memory-efficient way.

The Pixel-Aligned Implicit Function also has good extensibility. For example, without chang-
ing its function input, its output can be modified as follows:

f(F (x), Z(X)) = rgb. (3.5)

where rgb ∈ R3, which can be used to predict color. Figure 26 provides an overview of the
PIFu framework.

3.1.6 Single-View Surface Reconstruction

Due to the complex topology of the human body, it is difficult to find an Implicit Function
that can be expressed with a formula. We only have discrete observation points, such as some
points inside the body and others outside. Therefore, in PIFu, the GT Implicit Function is
expressed as follows:

f ∗
v (X) =

{
1, if X is inside the mesh surface.

0, otherwise.
(3.6)

This is essentially the same as the implicit function mentioned above, effectively converting
the implicit function’s value into the probability that a 3D point is occupied by the object.
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Figure 26: Overview of the PIFu Framework

Values closer to 1 indicate a higher probability of being occupied, while values closer to 0
indicate a higher likelihood of being empty. This also facilitates using the network’s Sigmoid
output as the output of the Pixel-Aligned Implicit Function. Thus, our goal is to obtain a
function fv(·) that fits the GT Implicit Function f ∗

v (·) as closely as possible.

Existing training data consists of m corresponding (2D image, 3D model) pairs. According
to the surface reconstruction process of PIFu shown above: for each (2D image, 3D model)
pair, the 2D image is first input into an image encoder g consisting of fully convolutional
layers to obtain the depth features FV of the same size as the original 2D image. For the
3D model, n 3D points {X1, Xi, · · · , Xn} can be sampled, and their corresponding Implicit
Function ground truths {f ∗

v (X1), f ∗
v (Xi), · · · , f ∗

v (Xn)} are known.

Based on this information, the following loss function can be constructed:

Loss = 1
n

n∑
i=1

|fv(FV (Xi), z(Xi)) − f ∗
v (Xi)|2. (3.7)

PIFu uses a Multilayer Perceptron (MLP)7 to fit the above equation fv(·). During the gradient
descent8 process, the image encoder g and fv(·) are jointly optimized.

After training the image encoder g and fv(·), during inference, the input is an image and the
corresponding camera parameters, as well as an approximate range where the person in the

7Multilayer Perceptron (MLP): A basic architecture of artificial neural networks. It is a feedforward neural
network consisting of multiple layers of neurons, where information flows from the input layer to the output
layer through a series of intermediate layers for transformation and processing.

8Gradient Descent: An optimization algorithm used to find the local minimum (or maximum) of a function.
It is commonly used to adjust model parameters to minimize (or maximize) a loss function.
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image is located. The approximate range can be discretized in three dimensions, and inputting
all points into the fv(·) function yields the 3D Occupancy information shown in Figure 26.
Running Marching Cubes38 provides the model of the object.

3.1.7 Spatial Sampling

During training, we need to sample n 3D points {X1, Xi, · · · , Xn} from the 3D model in the
training data. The quantity and method of sampling are crucial for training. The most direct
approach is to perform uniform sampling across each dimension of the approximate range of
each 3D model, as shown in the left side of Figure 27. However, the PIFu developers found
that using this method alone yielded suboptimal results. They needed the network to focus
more on information near the object’s surface, so the authors sampled around each vertex
of the 3D model, introducing jitter in the x, y, and z dimensions, with the jitter distance
following a Gaussian distribution N (0, σ), as shown on the right side of Figure 27. PIFu
combines these two sampling methods, uniform and Gaussian sampling in a ratio of 1:16, to
achieve the best results. Figure 28 shows the impact of different sampling methods on the
model’s performance.

Figure 27: Different Sampling Methods

3.1.8 Human Surface Color Reconstruction

As described in section 3.1.2, by modifying the output of the Pixel-Aligned Implicit Function
as in (3.2), it can be used to predict the color of the 3D point X. For this point, the loss
function is defined as:

Loss = 1
n

n∑
i=1

|fc(FC(Xi), z(Xi)) − C(Xi)|. (3.8)

C(Xi) represents the color of the 3D point Xi projected onto the 2D image, similar to the
surface geometry reconstruction method, optimizing both the image encoder and the implicit
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Figure 28: Impact of Different Sampling Methods on Model Performance

function fc(·). However, the authors found that this approach easily leads to overfitting
because it requires predicting the color of surface vertices while also learning the latent 3D
information, which is necessary for inferring colors of occluded parts of the body (e.g., back
vertices). Therefore, the paper proposes another approach based on the depth features FV

obtained from the previous step. In this case, fc(·) only needs to focus on the color of vertices
and not on latent 3D information, so the loss function becomes:

Loss = 1
n

n∑
i=1

|fc(FC(Xi, FV (Xi)), z(Xi)) − C(Xi)|. (3.9)

Additionally, the paper introduces an offset ϵ ∼ N (0, d) for surface vertices, meaning that
points within the range of Xi + ϵ use the color C(Xi). This approach aims to increase training
data and enhance the ability of fc(·) to guess the colors of occluded vertices.
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3.1.9 Multi-View Surface Reconstruction

The process of multi-view surface reconstruction is shown in Figure 29.

Figure 29: Multi-View Surface Reconstruction Process

For a given 3D point X, features of this point from multiple views can be obtained. These
features are then averaged across all views and input into the Pixel-Aligned Implicit Function
to determine whether the point is occupied by the model or to get the RGB value of the vertex.
The reconstruction results with different numbers of views are shown in Figure 30, indicating
that as the number of views increases, the reconstruction quality improves.

3.2 Summary of Other Works
This section primarily refers to abstracts of relevant model papers.

3.2.1 PIFuHD

This model was proposed and published in 2020. PIFuHD is an improved version of PIFu
aimed at addressing the problem of PIFu’s capability to only represent low-resolution human
models. The proposed solution involves first obtaining global depth information and receptive
fields through a low-resolution architecture, and then inputting the results from the first stage
into a high-resolution architecture to produce finer 3D reconstruction results.39
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Figure 30: Reconstruction Results with Different Numbers of Views

3.2.2 PaMIR

This model was proposed and published in 2021. The PaMIR model combines the SMPL model
with the PIFu model, first regressing to SMPL to obtain 3D features, and then combining 2D
features from PIFu, inputting them into the implicit function to finally determine whether the
sampled points are inside or outside the human body. This work also optimizes parameter
optimization methods and loss functions.40

3.2.3 Function4D

This model was proposed and published in 2021. It introduces a method combining temporal
volumetric fusion and deep implicit functions for human volumetric capture. To achieve
high-quality and temporally consistent reconstruction, dynamic sliding fusion is proposed to
integrate adjacent depth observations with topological consistency. Additionally, to generate
detailed and complete surfaces, a depth implicit function is proposed for RGBD input, which
not only retains geometric details on the depth input but also produces more reasonable
texture results.41

3.2.4 DMC

This model was proposed and published in 2021. The developers introduced a new method
called DeepMultiCap for capturing multi-person performances using sparse multi-view cam-
eras. This method can capture time-varying surface details without using pre-scanned tem-
plate models. To address the challenge of severe occlusion in closely interacting scenes, the
paper combines PIFu with parametric models to robustly reconstruct invisible surface areas
and designs an effective attention-aware module for capturing fine-grained geometric details
from multi-view images, generating high-fidelity results. In addition to the spatial attention
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approach, a novel temporal fusion method is proposed for video input to reduce noise and
temporal inconsistencies in moving character reconstruction.42

3.2.5 ICON

This model was proposed and published in 2022. Currently, methods for learning realistic and
animatable 3D dressed avatars either require 3D scanned data with pose control or carefully
controlled 2D images of user poses. ICON aims to learn an avatar using only 2D character
images with unrestricted poses. Given a set of images, the method estimates detailed 3D
surfaces from each image and then combines these surfaces into an animatable avatar. For the
first task, implicit functions are used; however, the current method is not robust to varying
human poses, often resulting in 3D surfaces with broken or detached limbs, missing details,
or non-human shapes. To address this issue, the developers proposed ICON (Implicit Clothed
humans Obtained from Normals), which utilizes local features. ICON has two main modules,
both leveraging the SMPL(-X) human model.43

4 Fusion Methods Based on RGB-D Input
The advent of inexpensive consumer-grade RGB-D cameras9 has significantly advanced visual
scene reconstruction methods. Computer graphics and computer vision researchers have de-
voted considerable effort to developing new algorithms that utilize RGB-D cameras to capture
comprehensive shape models of static and dynamic scenes, leading to significant advancements
across multiple dimensions. This section provides a brief overview of classic works related to
fusion methods based on RGB-D input, primarily referring to the developers’ papers.

4.1 For General Scenes
4.1.1 KinectFusion

This work, published in 2011, has been cited over 4800 times and is highly valuable. It
introduces a system capable of real-time, accurate mapping of complex and arbitrary indoor
scenes using only a moving, low-cost depth camera and general-purpose graphics hardware
under varying lighting conditions. The developers fused all depth data streamed from the
Kinect sensor10 into a global implicit surface model of the scene. By employing an iterative
closest point (ICP) algorithm that refines from a coarse to fine model relative to real-time
depth frames and simultaneously tracks these frames, the current sensor position is determined.
Compared to frame-by-frame tracking, this work demonstrates the advantage of tracking the

9RGB-D cameras: devices that capture both color images (RGB images) and depth information simultane-
ously. Unlike traditional RGB cameras that capture only color information, RGB-D cameras can obtain the
distance or depth information of each pixel from the camera. This depth information is usually presented as
grayscale images or pixel depth values, allowing each pixel to have both color and distance information.

10The Kinect sensor, developed by Microsoft, is a depth camera device widely used in computer vision,
virtual reality, and augmented reality. Originally launched in 2010 for the Xbox gaming console, it quickly
gained popularity in other fields due to its advanced depth perception and imaging capabilities. The Kinect
sensor has been extensively applied in virtual reality, augmented reality, 3D scanning, gesture recognition,
and indoor navigation, providing robust technical support for innovations in these areas. However, since 2017,
Microsoft has ceased production of new Kinect hardware and discontinued updates to its software development
kit.
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continually growing complete surface model, achieving tracking and mapping results with
limited drift and high accuracy over time in indoor-sized scenes. The real-time natural scene
modeling using only general sensors and GPU hardware marks an exciting step for augmented
reality (AR), particularly allowing real-time reconstruction of dense surfaces with a level of
detail and stability surpassing solutions provided by passive computer vision.44

4.1.2 DynamicFusion

This work, published in 2015 by the same developers of KinectFusion, presents the first
dense SLAM system capable of reconstructing non-rigidly deforming scenes in real-time by
fusing RGBD scan data captured from general sensors. The DynamicFusion method esti-
mates a dense volumetric 6D motion field while reconstructing scene geometry, deforming the
estimated shape into real-time frames. Similar to KinectFusion, the system produces more
detailed and complete reconstruction results as more measurement data is fused and updates
the model in real-time. The method is suitable for various moving objects and scenes since it
does not require templates or prior scene models.45

4.2 For Human Scenes
4.2.1 DoubleFusion

Published in 2015, DoubleFusion is a new real-time system that combines volumetric dy-
namic reconstruction with data-driven template fitting to simultaneously reconstruct detailed
geometry, non-rigid motion, and internal human shapes from a single depth camera. A key
contribution of this method is the dual-layer representation, consisting of a complete pa-
rameterized internal human shape and a gradually fused external surface layer. Predefined
node graphs on the human surface parameterize non-rigid deformations near the body, while
a free-form dynamic change graph parameterizes the external surface layer farther from the
body, enabling more general reconstruction. The developers also proposed a joint motion
tracking method based on the dual-layer representation for robust and fast motion tracking
performance. Additionally, the internal human shape is optimized online and adapted to the
external surface layer. Building on DynamicFusion, this method demonstrates reasonable per-
formance in reconstructing internal human shapes, showing improved rapid motion tracking
and loop closure detection performance in more challenging scenes.46

4.2.2 Fusion4D

Published in 2016 by Microsoft, Fusion4D introduces a new real-time multi-view perfor-
mance capture pipeline that generates temporally coherent, high-quality reconstruction re-
sults. The algorithm supports incremental reconstruction, improving surface estimation over
time while parameterizing non-rigid scene motion. The method is robust to large inter-frame
motion and topological changes, capable of reconstructing challenging scenes and demon-
strating geometric reconstruction results comparable to offline methods requiring orders of
magnitude more processing time and RGBD cameras.47

4.2.3 Function4D

The content of this work is introduced in Section 3.2.3.
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5 Summary and Outlook
Since the emergence of the SCAPE model, in-depth research on 3D human modeling has

been ongoing for nearly 20 years. The work in this area is impressive and widely applied
in practical life. It is observed that parameterized human models have laid the foundation
for the development of 3D human modeling, with models capable of matching the broadest
range of objects. However, accuracy may vary depending on conditions, leading to numerous
optimization works based on specific objectives. Professor Yutao classifies existing research in
this field into roughly four parts, as shown in Figure 31.

Figure 31: Summary of existing work by Professor Yutao

Based on my readings, I feel that research in 3D human modeling also requires extensive
knowledge of machine learning and deep learning. Model establishment typically involves
learning and training datasets, with some optimization issues, such as defining loss functions,
gradient descent, multilayer perceptrons, and other related knowledge that I have recently
studied in deep learning.

Finally, whether it is 3D human modeling or broader research themes, how to transition
from papers to real-life applications, how to approach the limits of physical models (i.e., opti-
mization problems), and how to advance from previous work to more contemporary solutions
are all worthy of contemplation.
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